SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huntingford Chris) "

Sökning: WFRF:(Huntingford Chris)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrams, Jesse F., et al. (författare)
  • Committed Global Warming Risks Triggering Multiple Climate Tipping Points
  • 2023
  • Ingår i: Earth's Future. - 2328-4277. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Many scenarios for limiting global warming to 1.5(degrees)C assume planetary-scale carbon dioxide removal sufficient to exceed anthropogenic emissions, resulting in radiative forcing falling and temperatures stabilizing. However, such removal technology may prove unfeasible for technical, environmental, political, or economic reasons, resulting in continuing greenhouse gas emissions from hard-to-mitigate sectors. This may lead to constant concentration scenarios, where net anthropogenic emissions remain non-zero but small, and are roughly balanced by natural carbon sinks. Such a situation would keep atmospheric radiative forcing roughly constant. Fixed radiative forcing creates an equilibrium committed warming, captured in the concept of equilibrium climate sensitivity. This scenario is rarely analyzed as a potential extension to transient climate scenarios. Here, we aim to understand the planetary response to such fixed concentration commitments, with an emphasis on assessing the resulting likelihood of exceeding temperature thresholds that trigger climate tipping points. We explore transients followed by respective equilibrium committed warming initiated under low to high emission scenarios. We find that the likelihood of crossing the 1.5(degrees)C threshold and the 2.0(degrees)C threshold is 83% and 55%, respectively, if today's radiative forcing is maintained until achieving equilibrium global warming. Under the scenario that best matches current national commitments (RCP4.5), we estimate that in the transient stage, two tipping points will be crossed. If radiative forcing is then held fixed after the year 2100, a further six tipping point thresholds are crossed. Achieving a trajectory similar to RCP2.6 requires reaching net-zero emissions rapidly, which would greatly reduce the likelihood of tipping events.
  •  
2.
  • Fisher, Joshua B., et al. (författare)
  • African tropical rainforest net carbon dioxide fluxes in the twentieth century
  • 2013
  • Ingår i: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 1471-2970 .- 0962-8436. ; 368:1625, s. 9-20120376
  • Tidskriftsartikel (refereegranskat)abstract
    • The African humid tropical biome constitutes the second largest rainforest region, significantly impacts global carbon cycling and climate, and has undergone major changes in functioning owing to climate and land-use change over the past century. We assess changes and trends in CO2 fluxes from 1901 to 2010 using nine land surface models forced with common driving data, and depict the inter-model variability as the uncertainty in fluxes. The biome is estimated to be a natural (no disturbance) net carbon sink (−0.02 kg C m−2 yr−1 or −0.04 Pg C yr−1, p < 0.05) with increasing strength fourfold in the second half of the century. The models were in close agreement on net CO2 flux at the beginning of the century (σ1901 = 0.02 kg C m−2 yr−1), but diverged exponentially throughout the century (σ2010 = 0.03 kg C m−2 yr−1). The increasing uncertainty is due to differences in sensitivity to increasing atmospheric CO2, but not increasing water stress, despite a decrease in precipitation and increase in air temperature. However, the largest uncertainties were associated with the most extreme drought events of the century. These results highlight the need to constrain modelled CO2 fluxes with increasing atmospheric CO2 concentrations and extreme climatic events, as the uncertainties will only amplify in the next century.
  •  
3.
  • Harper, Anna B., et al. (författare)
  • Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements
  • 2021
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 14:6, s. 3269-3294
  • Tidskriftsartikel (refereegranskat)abstract
    • Drought is predicted to increase in the future due to climate change, bringing with it myriad impacts on ecosystems. Plants respond to drier soils by reducing stomatal conductance in order to conserve water and avoid hydraulic damage. Despite the importance of plant drought responses for the global carbon cycle and local and regional climate feedbacks, land surface models are unable to capture observed plant responses to soil moisture stress. We assessed the impact of soil moisture stress on simulated gross primary productivity (GPP) and latent energy flux (LE) in the Joint UK Land Environment Simulator (JULES) vn4.9 on seasonal and annual timescales and evaluated 10 different representations of soil moisture stress in the model. For the default configuration, GPP was more realistic in temperate biome sites than in the tropics or high-latitude (cold-region) sites, while LE was best simulated in temperate and high-latitude (cold) sites. Errors that were not due to soil moisture stress, possibly linked to phenology, contributed to model biases for GPP in tropical savanna and deciduous forest sites. We found that three alternative approaches to calculating soil moisture stress produced more realistic results than the default parameterization for most biomes and climates. All of these involved increasing the number of soil layers from 4 to 14 and the soil depth from 3.0 to 10.8 m. In addition, we found improvements when soil matric potential replaced volumetric water content in the stress equation (the "soil14_psi" experiments), when the critical threshold value for inducing soil moisture stress was reduced ("soil14_p0"), and when plants were able to access soil moisture in deeper soil layers ("soil14_dr&z.ast;2"). For LE, the biases were highest in the default configuration in temperate mixed forests, with overestimation occurring during most of the year. At these sites, reducing soil moisture stress (with the new parameterizations mentioned above) increased LE and increased model biases but improved the simulated seasonal cycle and brought the monthly variance closer to the measured variance of LE. Further evaluation of the reason for the high bias in LE at many of the sites would enable improvements in both carbon and energy fluxes with new parameterizations for soil moisture stress. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES or as a general way to improve land surface carbon and water fluxes in other models. In addition, using soil matric potential presents the opportunity to include plant functional type-specific parameters to further improve modeled fluxes.
  •  
4.
  • Heskel, Mary A., et al. (författare)
  • Convergence in the temperature response of leaf respiration across biomes and plant functional types
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:14, s. 3832-3837
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.
  •  
5.
  •  
6.
  • Jung, Martin, et al. (författare)
  • Compensatory water effects link yearly global land CO 2 sink changes to temperature
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 541:7638, s. 516-520
  • Tidskriftsartikel (refereegranskat)abstract
    • Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO 2) originate primarily from fluctuations in carbon uptake by land ecosystems. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales. Here we use empirical models based on eddy covariance data and process-based models to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance. Our study indicates that spatial climate covariation drives the global carbon cycle response.
  •  
7.
  • Murray-Tortarolo, Guillermo, et al. (författare)
  • The dry season intensity as a key driver of NPP trends
  • 2016
  • Ingår i: Geophysical Research Letters. - 1944-8007. ; 43:6, s. 2632-2639
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze the impacts of changing dry season length and intensity on vegetation productivity and biomass. Our results show a wetness asymmetry in dry ecosystems, with dry seasons becoming drier and wet seasons becoming wetter, likely caused by climate change. The increasingly intense dry seasons were consistently correlated with a decreasing trend in net primary productivity (NPP) and biomass from different products and could potentially mean a reduction of 10–13% in NPP by 2100. We found that annual NPP in dry ecosystems is particularly sensitive to the intensity of the dry season, whereas an increase in precipitation during the wet season has a smaller effect. We conclude that changes in water availability over the dry season affect vegetation throughout the whole year, driving changes in regional NPP. Moreover, these results suggest that usage of seasonal water fluxes is necessary to improve our understanding of the link between water availability and the land carbon cycle.
  •  
8.
  • Peng, Shushi, et al. (författare)
  • Benchmarking the seasonal cycle of CO2 fluxes simulated by terrestrial ecosystem models
  • 2015
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 29:1, s. 46-64
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluated the seasonality of CO2 fluxes simulated by nine terrestrial ecosystem models of the TRENDY project against (1) the seasonal cycle of gross primary production (GPP) and net ecosystem exchange (NEE) measured at flux tower sites over different biomes, (2) gridded monthly Model Tree Ensembles-estimated GPP (MTE-GPP) and MTE-NEE obtained by interpolating many flux tower measurements with a machine-learning algorithm, (3) atmospheric CO2 mole fraction measurements at surface sites, and (4) CO2 total columns (X-CO2) measurements from the Total Carbon Column Observing Network (TCCON). For comparison with atmospheric CO2 measurements, the LMDZ4 transport model was run with time-varying CO2 fluxes of each model as surface boundary conditions. Seven out of the nine models overestimate the seasonal amplitude of GPP and produce a too early start in spring at most flux sites. Despite their positive bias for GPP, the nine models underestimate NEE at most flux sites and in the Northern Hemisphere compared with MTE-NEE. Comparison with surface atmospheric CO2 measurements confirms that most models underestimate the seasonal amplitude of NEE in the Northern Hemisphere (except CLM4C and SDGVM). Comparison with TCCON data also shows that the seasonal amplitude of X-CO2 is underestimated by more than 10% for seven out of the nine models (except for CLM4C and SDGVM) and that the MTE-NEE product is closer to the TCCON data using LMDZ4. From CO2 columns measured routinely at 10 TCCON sites, the constrained amplitude of NEE over the Northern Hemisphere is of 1.60.4 gC m(-2)d(-1), which translates into a net CO2 uptake during the carbon uptake period in the Northern Hemisphere of 7.92.0 PgC yr(-1).
  •  
9.
  • Piao, Shilong, et al. (författare)
  • Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends
  • 2013
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 19:7, s. 2117-2132
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to evaluate 10 process-based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux-tower-based estimates by Jung etal. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net primary productivity (NPP) apparent sensitivity to climate variability and atmospheric CO2 trends is diagnosed from each model output, using statistical functions. The temperature sensitivity is compared against ecosystem field warming experiments results. The CO2 sensitivity of NPP is compared to the results from four Free-Air CO2 Enrichment (FACE) experiments. The simulated global net biome productivity (NBP) is compared with the residual land sink (RLS) of the global carbon budget from Friedlingstein etal. [Nature Geoscience 3 (2010) 811] (FR10). We found that models produce a higher GPP (133 +/- 15Pg Cyr-1) than JU11 (118 +/- 6Pg Cyr-1). In response to rising atmospheric CO2 concentration, modeled NPP increases on average by 16% (5-20%) per 100ppm, a slightly larger apparent sensitivity of NPP to CO2 than that measured at the FACE experiment locations (13% per 100ppm). Global NBP differs markedly among individual models, although the mean value of 2.0 +/- 0.8Pg Cyr-1 is remarkably close to the mean value of RLS (2.1 +/- 1.2 Pg Cyr-1). The interannual variability in modeled NBP is significantly correlated with that of RLS for the period 1980-2009. Both model-to-model and interannual variation in model GPP is larger than that in model NBP due to the strong coupling causing a positive correlation between ecosystem respiration and GPP in the model. The average linear regression slope of global NBP vs. temperature across the 10 models is -3.0 +/- 1.5Pg Cyr-1 degrees C-1, within the uncertainty of what derived from RLS (-3.9 +/- 1.1Pg Cyr-1 degrees C-1). However, 9 of 10 models overestimate the regression slope of NBP vs. precipitation, compared with the slope of the observed RLS vs. precipitation. With most models lacking processes that control GPP and NBP in addition to CO2 and climate, the agreement between modeled and observation-based GPP and NBP can be fortuitous. Carbon-nitrogen interactions (only separable in one model) significantly influence the simulated response of carbon cycle to temperature and atmospheric CO2 concentration, suggesting that nutrients limitations should be included in the next generation of terrestrial biosphere models.
  •  
10.
  • Piao, Shilong, et al. (författare)
  • Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity.
  • 2014
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Satellite-derived Normalized Difference Vegetation Index (NDVI), a proxy of vegetation productivity, is known to be correlated with temperature in northern ecosystems. This relationship, however, may change over time following alternations in other environmental factors. Here we show that above 30°N, the strength of the relationship between the interannual variability of growing season NDVI and temperature (partial correlation coefficient RNDVI-GT) declined substantially between 1982 and 2011. This decrease in RNDVI-GT is mainly observed in temperate and arctic ecosystems, and is also partly reproduced by process-based ecosystem model results. In the temperate ecosystem, the decrease in RNDVI-GT coincides with an increase in drought. In the arctic ecosystem, it may be related to a nonlinear response of photosynthesis to temperature, increase of hot extreme days and shrub expansion over grass-dominated tundra. Our results caution the use of results from interannual time scales to constrain the decadal response of plants to ongoing warming.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy