SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hupa Mikko Professor) "

Sökning: WFRF:(Hupa Mikko Professor)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hannl, Thomas Karl, M.Sc. 1993- (författare)
  • Fluidized bed combustion and gasification for phosphorus recovery by co-conversion of sewage sludge with biomass
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In recent years, the thermal conversion of sewage sludge has proven its applicability for managing this inevitably generated waste. The viability arises from the concomitant features of recovering energy or valuable compounds, the breakdown of potentially harmful organic compounds, the separation or immobilization of heavy metals, and the formation of volume-reduced, sanitized residues. The inorganic residue after thermal conversion of municipal sewage sludge, i.e., the ash, is generally rich in phosphorus (P). However, P in sewage sludge ash is mostly present in a chemical association that is poorly plant-available, e.g., apatite and whitlockite. Since sewage sludge ashes represent a P-rich resource, a number of different post-processing methods have been fathomed to extract P or alter its association in the ash. While extraction methods often focus on eluting P with acids, methods to alter the P-association in the ash rely mostly on thermochemical post-processing with additives. A way of enhancing the plant-availability of P in the ash is the thermochemical treatment with alkali additives, e.g., (Na,K)2SO4 and (Na,K)2CO3, leading to the formation of alkali-bearing phosphates of improved plant-availability. Providing the necessary physiochemical conditions for this phosphate alteration process, there is a potential to achieve the formation of alkali-bearing phosphates already during the thermal conversion of sewage sludge.This work investigates the potential of forming K-bearing phosphates in fluidized bed co-combustion and co-gasification processes of P-rich sewage sludge and K-rich agricultural residues. The focus was set on the fate and role of P in the interaction of the main ash-forming elements based on thermodynamic equilibrium studies, lab-scale investigations, and bench-scale fluidized bed experiments. Additionally, the benefits, e.g., fuel flexibility and high conversion rate, and ash-related risks due to interaction of ash and bed material when using fluidized bed systems are elaborated with a focus on bed material selection and investigating the operational modes of combustion and gasification.The applicability of K- and Na-feldspar bed material in a pilot-scale indirect gasification system was investigated to provide a potential substitute for commonly used bed materials such as olivine and quartz. Olivine often contains heavy metals that could contaminate recovered ashes. Quartz may react with fuel-derived K, which could hamper the targeted formation of K-bearing phosphates and lead to bed material fragmentation and bed agglomeration. The bed material analysis of feldspar used in indirect wood gasification showed significant differences in the interaction phenomena between K- and Na-feldspar with the fuel ash. While both feldspar types displayed Ca-reaction and ash deposition layers on the particle surface, the interaction of Na-feldspar with K additionally led to the formation of K-reaction layers, possibly decreasing the bed particle integrity. The results suggest that K-feldspar is the preferred bed material option in terms of process stability and limiting the potential for side reactions of K when aiming for phosphate alteration toward K-bearing phosphates.Thermodynamic equilibrium calculations (TEC) were conducted with a focus on the fate of P and melting tendencies for a wide range of chemical compositions in biomass ashes and fuel mixtures between sewage sludge and the agricultural residues wheat straw (rich in Si and K) and sunflower husks (rich in K and Ca). The results for the K-Ca-Mg-P-Si-O system were validated with literature references, and an outline of practical implications was given. The results for sewage sludge and mixtures with agricultural residues functioned as a seminal tool for fuel design in experimental investigations. The thermodynamic preference for forming alkali-bearing phosphates in competition with pure Ca-phosphates and incorporating K in silicates could be shown. The analysis of the K-Ca-Mg-P-Si-O system highlighted the influence of elemental ratios between and within the Lewis acid formers (Mg, K, Ca) and the Lewis base formers (Si, P) on the fate of P and the ash melting tendency. The TEC for sewage sludge and mixtures with agricultural residues predicted that these elemental ratios are also the determining factors in the presence of large quantities of Al and Fe.Experimental research regarding the underlying ash chemistry with a focus on the fate of P was conducted in a single-pellet reactor and bench-scale fluidized bed combustion and gasification processes. The approach used sewage sludge pellets and co-pelletized mixtures of sewage sludge with wheat straw and sunflower husks to determine the P-recovery potentials and ash-related operational risks. The parameters were chosen with relevance to practical applications of fluidized bed technologies. The experimental findings supported the TEC results in several aspects, such as the preference for Ca-phosphate formation in sewage sludge ash and the exclusion of Fe from the bulk ash matrix. However, the results also showed practical limitations for the formation of K-bearing phosphates in fuel mixture ashes. The identified limitations were the reaction of K with Si, the high stability of Ca-rich orthophosphates, and the limited interaction of ash-forming elements in char residues from gasification processes. Furthermore, the results from the fluidized bed experiments highlighted the necessity for amendments in terms of fuel selection and fuel mixing to avoid operational risks such as bed agglomeration. The results of the conducted experimental investigations suggest that using K-feldspar as bed material in sewage sludge co-conversion setups with agricultural residues might benefit the incorporation of K in the P-rich ash fractions.The results and discussions presented in this work allowed for the assessment of crucial process and fuel parameters for fluidized bed conversion systems using sewage sludge fuels and biomass fuel mixtures focusing on the formation of K-bearing phosphates. The importance of the ash transformation chemistry and its impact on selecting a suitable bed material could be outlined based on experimental and modeling data. The outcome shall assist the design of future large-scale applications in terms of a viable process and fuel design for energy and resource recovery from sewage sludge and agricultural residues.
  •  
2.
  • Alipour, Yousef, 1979- (författare)
  • Furnace Wall Corrosion in a Wood-fired Boiler
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The use of renewable wood-based fuel has been increasing in the last few decades because it is said to be carbon neutral. However, wood-based fuel, and especially used wood (also known as recycled wood or waste wood), is more corrosive than virgin wood (forest fuel), because of higher amounts of chlorine and heavy metals. These elements increase the corrosion problems at the furnace walls where the oxygen level is low.Corrosion mechanisms are usually investigated at the superheaters where the temperature of the material and the oxygen level is higher than at the furnace walls.  Much less work has been performed on furnace wall corrosion in wood or used wood fired boilers, which is the reason for this project.    Tests are also mostly performed under simplified conditions in laboratories, making the results easier to interpret.  In power plants the interpretation is more complicated. Difficulties in the study of corrosion processes are caused by several factors such as deposit composition, flue gas composition, boiler design, and combustion characteristics and so on. Therefore, the laboratory tests should be a complement to the field test ones. This doctoral project involved in-situ testing at the furnace wall of power boilers and may thus contribute to fill the gap.The base material for furnace walls is a low alloy steel, usually 16Mo3, and the tubes may be coated or uncoated. Therefore tests were performed both on 16Mo3 and more highly alloyed materials suitable for protective coatings.Different types of samples exposed in used-wood fired boilers were analysed by different techniques such as LOM (light optical microscopy), XRD (X-ray diffraction), SEM (scanning electron microscopy), EDS (energy dispersive spectroscopy), WDS (wavelength dispersive spectroscopy), FIB (focused ion beam) and GD-OES (glow discharge optical emission spectroscopy). The corrosion rate was measured. The environment was also thermodynamically modelled by TC (Thermo-Calc ®).The results showed that 16Mo3 in the furnace wall region is attacked by HCl, leading to the formation of iron chloride and a simultaneous oxidation of the iron chloride. The iron chloride layer appeared to reach a steady state thickness.  Long term exposures showed that A 625 (nickel chromium alloy) and Kanthal APMT (iron-chromium-aluminium alloy) had the lowest corrosion rate (about 25-30% of the rate for 16Mo3), closely followed by 310S (stainless steel), making these alloys suitable for coating materials. It was found that the different alloys were attacked by different species, although they were exposed in the boiler at the same time in the same place. The dominant corrosion process in the A 625 samples seemed to be by a potassium-lead combination, while lead did not attack the APMT samples. Potassium attacked the alumina layer in the APMT samples, leading to the formation of a low-protective aluminate and chlorine was found to attack the base material.  The results showed that stainless steels are attacked by both mechanisms (Cl- induced attack and K-Pb combination).Decreasing the temperature of the furnace walls of a waste wood fired boiler could decrease the corrosion rate of 16Mo3. However, this low corrosion rate corresponds to a low final steam pressure of the power plant, which in not beneficial for the electrical efficiency.The short term testing results showed that co-firing of sewage sludge with used wood can lead to a reduction in the deposition of K and Cl on the furnace wall during short term testing. This led to corrosion reduction of furnace wall materials and coatings. The alkali chlorides could react with the aluminosilicates in the sludge and be converted to alkali silicates. The chromia layer in A 625 and alumina in APMT were maintained with the addition of sludge. 
  •  
3.
  •  
4.
  • Carlsson, Per (författare)
  • Large scale experiments and modeling of black liquor gasification
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Biomass gasification could provide a basis for increased electricity and engine fuel production from a renewable source in the pulp and paper industry. This work focuses on the largest byproduct available at the pulp mills, black liquor. Black liquor is a mixture of spent cooking chemicals, dissolved lignin, dissolved carbohydrates and a small portion of inorganic compounds found in the wood. The conventional technology to recover the cooking chemicals and the chemical energy as heat is combustion in large boilers. Here, gasification could be an alternative, replacing or complementing the boilers. The gasification technology produces a combustible gas that can be cleaned to produce electricity in a gas turbine/engine or, be synthesized into valuable chemicals or liquid engine fuels. The technology has been demonstrated in development scale since 2005 and appears to be promising. Still, commercial plants have not yet been built. This thesis focuses on the understanding of the oxygen blown, pressurized, entrained flow, black liquor gasification technology. The main goals have been to increase the understanding about the dominating mechanisms in black liquor gasification and to develop an engineering tool that can be used to design and optimize, pressurized, entrained flow, black liquor gasifiers. To accomplish these goals gas samples were extracted from the gasification reactor using a gas sampling probe that was developed within this work. Gas samples were also collected downstream the quench located underneath the reactor and the results were compared. Finally, an existing numerical model was developed so it can predict the behavior of the black liquor gasifier within reasonable accuracy.Even though the actual mechanisms in the reactor and quench are very complex it appears that they can be described with relatively simple global mechanisms. The main gas components are dictated by the water gas shift reaction. At the outlet of the reactor the gas composition is not in global thermodynamic equilibrium. However, the main gas components are close to partial equilibrium whilst CH4 and H2S are not. Very little of the available CH4 is reformed outside the flame region and the primary consumption occurs in the flame through oxidation and reformation. When the system pressure is increased, H2S concentration in the gas will increase, the same will happen if the oxygen-fuel ratio is decreased. In the quench, the primary spray flow rate/load (mass flow of black liquor and oxygen) ratio has a critical value of about 0.6 below which the gas concentration of CO2, CO, and H2, is significantly changed. The H2/CO ratio can be changed from about 1.15 to 1.4 by changing the primary spray flow rate/load ratio. The mechanism is associated with the water gas shift reaction and the quenching rate of the gas stream. The computational fluid dynamics reactor model predicts most of the trends when operating conditions are changed and is in good agreement with the experimental results with respect to gas composition and char carbon conversion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy