SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huss Mikael 1974 ) "

Sökning: WFRF:(Huss Mikael 1974 )

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huss, Mikael, 1974- (författare)
  • Computational modeling of the lamprey CPG : from subcellular to network level
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Due to the staggering complexity of the nervous system, computer modelling is becoming one of the standard tools in the neuroscientist's toolkit. In this thesis, I use computer models on different levels of abstraction to compare hypotheses and seek un- derstanding about pattern-generating circuits (central pattern generators, or CPGs) in the lamprey spinal cord. The lamprey, an ancient and primitive animal, has long been used as a model system for understanding vertebrate locomotion. By examining the lamprey spinal locomotor network, which is a comparatively simple prototype of pattern-generating networks used in higher animals, it is possible to obtain insights about the design principles behind the spinal generation of locomotion. A detailed computational model of a generic spinal neuron within the lamprey locomotor CPG network is presented. This model is based, as far as possible, on published experimental data, and is used as a building block for simulations of the whole CPG network as well as subnetworks. The model construction process itself revealed a number of interesting questions and predictions which point toward new laboratory experiments. For example, a novel potential role for KNaF channels was proposed, and estimates of relative soma/dendritic conductance densities for KCaN and KNaS channels were given. Apparent inconsistencies in predicted spike widths for intact vs. dissociated neurons were also found. In this way, the new model can be of benefit by providing an easy way to check the current conceptual understanding of lamprey spinal neurons. Network simulations using this new neuron model were then used to address aspects of the overall coordination of pattern generation in the whole lamprey spinal cord CPG as well as rhythm-generation in smaller hemisegmental networks. The large-scale simulations of the whole spinal CPG yielded several insights: (1) that the direction of swimming can be determined from only the very rostral part of the cord, (2) that reciprocal inhibition, in addition to its well-known role of producing alternating left-right activity, facilitates and stabilizes the dynamical control of the swimming pattern, and (3) that variability in single-neuron properties may be crucial for accurate motor coordination in local circuits. We used results from simulations of smaller excitatory networks to propose plausible mechanisms for obtaining self-sustaining bursting activity as observed in lamprey hemicord preparations. A more abstract hemisegmental network model, based on Izhikevich neurons, was used to study the sufficient conditions for obtaining bistability between a slower, graded activity state and a faster, non-graded activity state in a recurrent excitatory network. We concluded that the inclusion of synaptic dynamics was a sufficient condition for the appearance of such bistability. Questions about rhythmic activity intrinsic to single spinal neurons – NMDA-TTX oscillations – were addressed in a combined experimental and computational study. We showed that these oscillations have a frequency which grows with the concentration of bath-applied NMDA, and constructed a new simplified computational model that was able to reproduce this as well as other experimental results. A combined biochemical and electrophysiological model was constructed to examine the generation of IP3-mediated calcium oscillations in the cytosol of lamprey spinal neurons. Important aspects of these oscillations were captured by the combined model, which also makes it possible to probe the interplay between intracellular biochemical pathways and the electrical activity of neurons. To summarize, this thesis shows that computational modelling of neural circuits on different levels of abstraction can be used to identify fruitful areas for further experimental research, generate experimentally testable predictions, or to give insights into possible design principles of systems that are currently hard to perform experiments on.
  •  
2.
  • Schuster, Jens, Assistant Professor, 1972-, et al. (författare)
  • Transcriptomes of Dravet syndrome iPSC derived GABAergic cells reveal dysregulated pathways for chromatin remodeling and neurodevelopment
  • 2019
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 132
  • Tidskriftsartikel (refereegranskat)abstract
    • Dravet syndrome (DS) is an early onset refractory epilepsy typically caused by de novo heterozygous variants in SCN1A encoding the a-subunit of the neuronal sodium channel Na(v)1.1. The syndrome is characterized by age related progression of seizures, cognitive decline and movement disorders. We hypothesized that the distinct neurodevelopmental features in DS are caused by the disruption of molecular pathways in Na(v)1.1 haploinsufficient cells resulting in perturbed neural differentiation and maturation. Here, we established DS-patient and control induced pluripotent stem cell derived neural progenitor cells (iPSC NPC) and GABAergic interneuronal (iPSC GABA) cells. The DS-patient iPSC GABA cells showed a shift in sodium current activation and a perturbed response to induced oxidative stress. Transcriptome analysis revealed specific dysregulations of genes for chromatin structure, mitotic progression, neural plasticity and excitability in DS-patient iPSC NPCs and DS-patient iPSC GABA cells versus controls. The transcription factors FOXM1 and E2F1, positive regulators of the disrupted pathways for histone modification and cell cycle regulation, were markedly up-regulated in DS-iPSC GABA lines. Our study highlights transcriptional changes and disrupted pathways of chromatin remodeling in Na(v)1.1 haploinsufficient GABAergic cells, providing a molecular framework that overlaps with that of neurodevelopmental disorders and other epilepsies.
  •  
3.
  • Schuster, Jens, Assistant Professor, 1972-, et al. (författare)
  • ZEB2 haploinsufficient Mowat-Wilson syndrome induced pluripotent stem cells show disrupted GABAergic transcriptional regulation and function
  • 2022
  • Ingår i: Frontiers in Molecular Neuroscience. - : Frontiers Media SA. - 1662-5099. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Mowat-Wilson syndrome (MWS) is a severe neurodevelopmental disorder caused by heterozygous variants in the gene encoding transcription factor ZEB2. Affected individuals present with structural brain abnormalities, speech delay and epilepsy. In mice, conditional loss of Zeb2 causes hippocampal degeneration, altered migration and differentiation of GABAergic interneurons, a heterogeneous population of mainly inhibitory neurons of importance for maintaining normal excitability. To get insights into GABAergic development and function in MWS we investigated ZEB2 haploinsufficient induced pluripotent stem cells (iPSC) of MWS subjects together with iPSC of healthy donors. Analysis of RNA-sequencing data at two time points of GABAergic development revealed an attenuated interneuronal identity in MWS subject derived iPSC with enrichment of differentially expressed genes required for transcriptional regulation, cell fate transition and forebrain patterning. The ZEB2 haploinsufficient neural stem cells (NSCs) showed downregulation of genes required for ventral telencephalon specification, such as FOXG1, accompanied by an impaired migratory capacity. Further differentiation into GABAergic interneuronal cells uncovered upregulation of transcription factors promoting pallial and excitatory neurons whereas cortical markers were downregulated. The differentially expressed genes formed a neural protein-protein network with extensive connections to well-established epilepsy genes. Analysis of electrophysiological properties in ZEB2 haploinsufficient GABAergic cells revealed overt perturbations manifested as impaired firing of repeated action potentials. Our iPSC model of ZEB2 haploinsufficient GABAergic development thus uncovers a dysregulated gene network leading to immature interneurons with mixed identity and altered electrophysiological properties, suggesting mechanisms contributing to the neuropathogenesis and seizures in MWS.
  •  
4.
  • Sobol, Maria, et al. (författare)
  • Transcriptome and Proteome Profiling of Neural Induced Pluripotent Stem Cells from Individuals with Down Syndrome Disclose Dynamic Dysregulations of Key Pathways and Cellular Functions
  • 2019
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 56:10, s. 7113-7127
  • Tidskriftsartikel (refereegranskat)abstract
    • Down syndrome (DS) or trisomy 21 (T21) is a leading genetic cause of intellectual disability. To gain insights into dynamics of molecular perturbations during neurogenesis in DS, we established a model using induced pluripotent stem cells (iPSC) with transcriptome profiles comparable to that of normal fetal brain development. When applied on iPSCs with T21, transcriptome and proteome signatures at two stages of differentiation revealed strong temporal dynamics of dysregulated genes, proteins and pathways belonging to 11 major functional clusters. DNA replication, synaptic maturation and neuroactive clusters were disturbed at the early differentiation time point accompanied by a skewed transition from the neural progenitor cell stage and reduced cellular growth. With differentiation, growth factor and extracellular matrix, oxidative phosphorylation and glycolysis emerged as major perturbed clusters. Furthermore, we identified a marked dysregulation of a set of genes encoded by chromosome 21 including an early upregulation of the hub gene APP, supporting its role for disturbed neurogenesis, and the transcription factors OLIG1, OLIG2 and RUNX1, consistent with deficient myelination and neuronal differentiation. Taken together, our findings highlight novel sequential and differentiation-dependent dynamics of disturbed functions, pathways and elements in T21 neurogenesis, providing further insights into developmental abnormalities of the DS brain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy