SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hussain Ayman) "

Sökning: WFRF:(Hussain Ayman)

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Ujan, Zaheer Ahmed, et al. (författare)
  • The Crystal Disorder into ZnO with Addition of Bromine and Its Outperform Role in the Photodegradation of Methylene Blue
  • 2022
  • Ingår i: Journal of cluster science. - : SPRINGER/PLENUM PUBLISHERS. - 1040-7278 .- 1572-8862. ; 33:1, s. 281-291
  • Tidskriftsartikel (refereegranskat)abstract
    • In this research work, bromine (Br) is successfully doped into ZnO nanostructures using solvothermal method. The morphology, crystalline features, and composition of Br doped ZnO nanostructures were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X ray spectroscopy (EDX) respectively. These newly prepared nanostructured materials were tested as photocatalysts for the photodegradation of methylene blue (MB) in aqueous solution under UV light. The kinetic rate constants were observed in the order (20% Br/ZnO > 15% Br/ZnO > 10% Br/ZnO > 5% Br/ZnO >pristine ZnO), thus they are indicating that the increasing Br dopant level has linear effect on the photodegradation of MB. The photocatalytic degradation efficiency of 60% was achieved for the pristine ZnO during the irradiation of UV light for 5 h, however 20% Br doped ZnO nanostructures has shown enhanced degradation efficiency of 97.63% during the irradiation of UV light for short interval of time of 2.2 h. The 20% Br/ZnO describes the highest rate constant value of (24.13 x 10(-3) min(-1)), for time period of 2.2 h and this values is about 8 and 4 times higher than the pristine ZnO (3.72 x 10(-3) min(-1)) and 5% Br/ZnO (6.13 x 10(-3) min(-1)), respectively. The obtained results of 20% Br doped ZnO sample are superior or equal in performance than the recently reported works. The catalytic mechanism is also proposed and it indicates the role of electrons coming from the bromine ion might act as radical for the degradation of MB. The present approach is simpler, environment friendly, scalable and could be of great consideration for the diverse energy and environment related applications. Graphic
  •  
3.
  • Albaqami, Munirah D., et al. (författare)
  • The fast nucleation/growth of Co3O4 nanowires on cotton silk : the facile development of a potentiometric uric acid biosensor
  • 2022
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 12:29, s. 18321-18332
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we have used cotton silk as a source of abundant hydroxyl groups for the fast nucleation/growth of cobalt oxide (Co3O4) nanowires via a hydrothermal method. The crystal planes of the Co3O4 nanowires well matched the cubic phase. The as-synthesized Co3O4 nanowires mainly contained cobalt and oxygen elements and were found to be highly sensitive towards uric acid in 0.01 M phosphate buffer solution at pH 7.4. Importantly, the Co3O4 nanowires exhibited a large surface area, which was heavily utilized during the immobilization of the enzyme uricase via a physical adsorption method. The potentiometric response of the uricase-immobilizing Co3O4 nanowires was measured in the presence of uric acid (UA) against a silver/silver chloride (Ag/AgCl) reference electrode. The newly fabricated uric acid biosensor possessed a low limit of detection of 1.0 +/- 0.2 nM with a wide linear range of 5 nM to 10 mM and sensitivity of 30.6 mV dec(-1). Additionally, several related parameters of the developed uric acid biosensor were investigated, such as the repeatability, reproducibility, storage stability, selectivity, and dynamic response time, and these were found to be satisfactory. The good performance of the Co3O4 nanowires was verified based on the fast charge-transfer kinetics, as confirmed via electrochemical impedance spectroscopy. The successful practical use of the uric acid biosensor was demonstrated based on the recovery method. The observed performance of the uricase-immobilizing Co3O4 nanowires revealed that they could be considered as a promising and alternative tool for the detection of uric acid under both in vitro and in vivo conditions. Also, the use of cotton silk as a source of abundant hydroxyl groups may be considered for the remarkably fast nucleation/growth of other metal-oxide nanostructures, thereby facilitating the fabrication of functional electrochemical devices, such as batteries, water-splitting devices, and supercapacitors.
  •  
4.
  • Ali Soomro, Razium, et al. (författare)
  • Highly sensitive determination of atropine using cobalt oxide nanostructures: Influence of functional groups on the signal sensitivity
  • 2016
  • Ingår i: Analytica Chimica Acta. - : ELSEVIER SCIENCE BV. - 0003-2670 .- 1873-4324. ; 948, s. 30-39
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes sensitive determination of atropine using glassy carbon electrodes (GCE) modified with Co3O4 nanostructures. The as-synthesised nanostructures were grown using cysteine (CYS), glutathione (GSH) and histidine (HYS) as effective templates under hydrothermal action. The obtained morphologies revealed interesting structural features, including both cavity-based and flower-shaped structures. The as-synthesised morphologies were noted to actively participate in electro-catalysis of atropine (AT) drug where GSH-assisted structures exhibited the best signal response in terms of current density and over-potential value. The study also discusses the influence of functional groups on the signal sensitivity of atropine electro-oxidation. The functionalisation was carried with the amino acids originally used as effective templates for the growth of Co3O4 nanostructures. The highest increment was obtained when GSH was used as the surface functionalising agent. The GSH-functionalised Co3O4-modified electrode was utilised for the electro-chemical sensing of AT in a concentration range of 0.01 -0.46 mu M. The developed sensor exhibited excellent working linearity (R-2 = 0.999) and signal sensitivity up to 0.001 mu M of AT. The noted high sensitivity of the sensor is associated with the synergy of superb surface architectures and favourable interaction facilitating the electron transfer kinetics for the electro-catalytic oxidation of AT. Significantly, the developed sensor demonstrated excellent working capability when used for AT detection in human urine samples with strong anti-interference potential against common co-existing species, such as glucose, fructose, cysteine, uric acid, dopamine and ascorbic acid. (C) 2016 Elsevier B.V. All rights reserved.
  •  
5.
  • Alshgari, Razan A., et al. (författare)
  • Manipulation of CuO morphology for efficient potentiometric detection of urea via slow nucleation/growth kinetics exerted by mixed solvents
  • 2022
  • Ingår i: Journal of materials science. Materials in electronics. - : SPRINGER. - 0957-4522 .- 1573-482X. ; 33, s. 25250-25262
  • Tidskriftsartikel (refereegranskat)abstract
    • Controlling the reaction kinetics during the nucleation/growth of cupric oxide (CuO) nanostructures is very critical in order to achieve a specific and well-defined morphology. For this purpose, we have slowed down the reaction speed using a mixed solvent concept and successfully obtained a chain-like morphology of CuO nanostructures using hydrothermal method. The CuO chain-like morphology was synthesized using a 1:1 (v/v) ratio of ethylene glycol and water. The morphology and crystalline features of CuO were studied by scanning electron microscopy (SEM) and powder X-ray diffraction techniques. The high resolution transmission electron microscopy revealed 5 nm crystallite size for the CuO material prepared in the mixed solvents. The obtained results have shown that the prepared CuO chains had a monocline phase, containing only Cu and O as main elements as confirmed by energy dispersive spectroscopy. This unique morphology obtained from mixed solvent process has provided a better surface for the loading of urease enzyme, thus it enabled the development of sensitive and selective urea biosensor in phosphate buffer solution of pH 7.4. The physical adsorption method was used to immobilize urease enzyme onto the nano surface of CuO. The fabricated biosensor based on urease/CuO chains has shown a dynamic linear range from 0.0005 to15 mM with a low limit of detection 0.0001 mM. Additionally, a fast response time aroudn1s, h high selectivity, stability, repeatability, storage time, and reproducibility were observed. The effect of pH and temperature on the potentiometric signal of the developed biosensor was also examined. Importantly, the practical aspects of the fabricated urea biosensor were probed and the obtained percent recovery results revealed an outstanding performance. The strategy of using mixed solvent with equal volume ratio would be useful for the preparation of other metal oxides with improved catalytic properties for a wide range of clinical, biomedical and other related applications.
  •  
6.
  • Baloach, Qurrat-ul-ain, et al. (författare)
  • An amperometric sensitive dopamine biosensor based on novel copper oxide nanostructures
  • 2017
  • Ingår i: Microsystem Technologies. - : SPRINGER. - 0946-7076 .- 1432-1858. ; 23:5, s. 1229-1235
  • Tidskriftsartikel (refereegranskat)abstract
    • It is highly important to explore the influence of counter anions on the morphology in order to have a desired nanostructure with unique properties. Therefore, in this research work the influence of counter anions on the morphology of copper oxide (CuO) nanostructures is presented using copper chloride and copper acetate salts. A significant role of counter anions on the morphology of CuO nanostructures is observed. The hydrothermal method is used to carry out the synthesis of CuO nanomaterial. The prepared CuO nanostructures are characterized by scanning electron microscopy and X-ray diffraction techniques. The prepared CuO nanomaterial exhibits porous nature with thin nanowires and sponge like morphologies. The dopamine sensing application was carried for exploring the electrocatalytic properties of CuO nanostructures. The presented dopamine biosensor exhibited wide linear range for detection of dopamine from 5 to 40 A mu M with sensitivity of 12.8 A mu A mM(-1) cm(-2). The limit of detection and limit of quantification were estimated in order 0.11 and 0.38 A mu M respectively. The developed dopamine biosensor is highly sensitive, selective, stable and reproducible. The common interfering species such as glucose, ascorbic acid and uric acid showed negligible change in the current when same concentration of dopamine and these interfering species was used. The fabricated biosensor could be used for the determination of dopamine from real blood samples.
  •  
7.
  • Chang, Abdul Sattar, et al. (författare)
  • Pd-Co3O4-based nanostructures for the development of enzyme-free glucose sensor
  • 2022
  • Ingår i: Bulletin of Materials Science. - : INDIAN ACAD SCIENCES. - 0250-4707 .- 0973-7669. ; 45:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we report enzyme-free glucose sensors based on palladium (Pd) nanoparticles deposited onto Co3O4 nanostructures. A simple, low-temperature aqueous method was used for the fabrication of Co3O4 nanostructures. Then, Pd nanoparticles were decorated onto Co3O4 nanostructures using the ultraviolet reduction method. Morphology, elemental composition and crystalline features of the proposed composite nanostructures were investigated by powder X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. Cyclic voltammetry and linear sweep voltammetry were used to investigate the electrochemical behaviour of Pd-Co3O4 nanostructures during glucose sensing. The proposed nanostructures showed excellent electrochemical activity for the quantitative detection of glucose at a potential of 0.6 V vs. Ag/AgCl. Importantly, the fabricated enzyme-free glucose sensor shows a linear response over the range of 1-6.0 mM glucose, with a limit of detection of 0.01 mM. The interference study was also carried out to probe the selectivity of Pd-Co3O4 nanostructures towards glucose detection in the presence of different interfering substances. The combined results attest that the as-synthesized Pd-Co3O4 nanostructures are highly stable and selective for the detection of glucose, suggesting their great potential for the quantitative determination of glucose in different biological fluids.
  •  
8.
  • Kumar, Shusheel, et al. (författare)
  • Transforming NiCo2O4 nanorods into nanoparticles using citrus lemon juice enhancing electrochemical properties for asymmetric supercapacitor and water oxidation
  • 2023
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 13:27, s. 18614-18626
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, the nanostructured nickel–cobalt bimetallic oxide (NiCo2O4) material with high electrochemical activity has received intensive attention. Beside this, the biomass assisted synthesis of NiCo2O4 is gaining popularity due to its advantageous features such as being low cost, simplicity, minimal use of toxic chemicals, and environment-friendly and ecofriendly nature. The electrochemical activity of spinel NiCo2O4 is associated with its mixed metal oxidation states. Therefore, much attention has been paid to the crystal quality, morphology and tunable surface chemistry of NiCo2O4 nanostructures. In this study, we have used citrus lemon juice consisting of a variety of chemical compounds having the properties of a stabilizing agent, capping agent and chelating agent. Moreover, the presence of several acidic chemical compounds in citrus lemon juice changed the pH of the growth solution and consequently we observed surface modified and structural changes that were found to be very effective for the development of energy conversion and energy storage systems. These naturally occurring compounds in citrus lemon juice played a dynamic role in transforming the nanorod morphology of NiCo2O4 into small and well-packed nanoparticles. Hence, the prepared NiCo2O4 nanostructures exhibited a new surface-oriented nanoparticle morphology, high concentration of defects on the surface (especially oxygen vacancies), sufficient ionic diffusion and reaction of electrolytic ions, enhanced electrical conductivity, and favorable reaction kinetics at the interface. The electrocatalytic properties of the NiCo2O4 nanostructures were studied in oxygen evolution reaction (OER) at a low overpotential of 250 mV for 10 mA cm−2, Tafel slope of 98 mV dec−1, and durability of 40 h. Moreover, an asymmetric supercapacitor was produced and the obtained results indicated a high specific capacitance of (Cs) of 1519.19 F g−1, and energy density of 33.08 W h kg−1 at 0.8 A g−1. The enhanced electrochemical performance could be attributed to the favorable structural changes, surface modification, and surface crystal facet exposure due to the use of citrus lemon juice. The proposed method of transformation of nanorod to nanoparticles could be used for the design of a new generation of efficient electrocatalyst materials for energy storage and conversion uses.
  •  
9.
  • Tahira, Aneela, et al. (författare)
  • Ascorbic Acid Assisted Synthesis of Cobalt Oxide Nanostructures, Their Electrochemical Sensing Application for the Sensitive Determination of Hydrazine
  • 2016
  • Ingår i: Journal of Electronic Materials. - : SPRINGER. - 0361-5235 .- 1543-186X. ; 45:7, s. 3695-3701
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes, the synthesis of cobalt oxide nanostructures using ascorbic acid as a growth directing agent by the hydrothermal method. Ascorbic acid is used for the first time for the synthesis of cobalt oxide nanostructures and a unique morphology is prepared in the present study. The cobalt oxide nanostructures were characterized by scanning electron microcopy, x-ray diffraction, and x-ray photoelectron spectroscopy techniques. These analytical techniques demonstrated well defined morphology, good crystalline quality, and high purity of as prepared cobalt oxide nanostructures. The glassy carbon electrode was modified with cobalt oxide nanostructures for the development of a sensitive and selective electrochemical hydrazine sensor. The developed hydrazine sensor exhibits a linear range of 2-24 mu M. The sensitivity and limit of detection of presented hydrazine sensors are 12,734 mu A/mM/cm(2) and 0.1 mu M respectively. The developed hydrazine sensor is highly selective, stable, and reproducible. The proposed sensor is successfully applied for the detection of hydrazine from different water samples. The present study provides the development of an alternative tool for the reliable monitoring of hydrazine from environmental and biological samples.
  •  
10.
  • Abbafati, Cristiana, et al. (författare)
  • 2020
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy