SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hussmann H.) "

Sökning: WFRF:(Hussmann H.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Coustenis, A., et al. (författare)
  • TandEM : Titan and Enceladus mission
  • 2009
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 893-946
  • Tidskriftsartikel (refereegranskat)abstract
    • TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (MontgolfiSre) and possibly several landing probes to be delivered through the atmosphere.
  •  
2.
  •  
3.
  • Bezivin, J., et al. (författare)
  • OCL and model driven engineering
  • 2005
  • Ingår i: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). - 1611-3349 .- 0302-9743. ; 3297, s. 67-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Precise modeling is essential to the success of the OMG's Model Driven Architecture initiative. At the modeling level (M1) OCL allows for the precision needed to write executable models. Can OCL be extended to become a full high-level executable language with side-effects? At the meta-level (M2), queries, views and transformations are subjects that will be vital to the success of the OMG's Model Driven Architecture initiative. Will OCL 2.0 become an essential part of the Queries/Views/Transformations standard and what will be its application areas in industry? Can the features of OCL 2.0 be used in the Model Driven Engineering (MDE) approach? This workshop aims at bringing together people from academia that are expected to report on inspiring ideas for innovative application scenarios and tools, and industrial practitioners, which are expected to provide statements on their view of the future of OCL in the context of MDE.
  •  
4.
  • Oberst, J., et al. (författare)
  • Planetary polar explorer – the case for a next-generation remote sensing mission to low Mars orbit
  • 2022
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 54, s. 695-711
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose the exploration of polar areas on Mars by a next-generation orbiter mission. In particular, we aim at studying the seasonal and regional variations in snow-deposits, which – in combination with measurements of temporal variations in rotation and gravity field – will improve models of the global planetary CO2 cycle. A monitoring of polar scarps for rock falls and avalanche events may provide insights into the dynamics of ice sheets. The mapping of the complex layering of polar deposits, believed to contain an important record of climate history, may help us understand the early climate collapse on the planet. Hence, we propose an innovative next-generation exploration mission in polar circular Low Mars Orbit, which will be of interest to scientists and challenging to engineers alike. Schemes will be developed to overcome atmosphere drag forces acting upon the spacecraft by an electric propulsion system. Based on the experience of missions of similar type in Earth orbit we believe that a two-year mission in circular orbit is possible at altitudes as low as 150 km. Such a mission opens new opportunities for novel remote sensing approaches, not requiring excessive telescope equipment or power. We anticipate precision altimetry, powerful radars, high-resolution imaging, and magnetic field mapping. © 2022, The Author(s).
  •  
5.
  • Högfeldt, Anna-Karin, et al. (författare)
  • Program Leadership from a Nordic Perspective
  • 2012
  • Ingår i: Proceedings of the 8th International CDIO Conference, Queensland University of Technology, Brisbane..
  • Konferensbidrag (refereegranskat)
  •  
6.
  • Stephan, K., et al. (författare)
  • Regions of interest on Ganymede's and Callisto's surfaces as potential targets for ESA's JUICE mission
  • 2021
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 208
  • Tidskriftsartikel (refereegranskat)abstract
    • The JUpiter Icy moons Explorer (JUICE) will investigate Ganymede's and Callisto's surfaces and subsurfaces from orbit to explore the geologic processes that have shaped and altered their surfaces by impact, tectonics, possible cryovolcanism, space weathering due to micrometeorites, radiation and charged particles as well as explore the structure and properties of the icy crust and liquid shell (Grasset et al., 2013). The best possible synergy of the JUICE instruments is required to answer the major science objective of this mission and to fully exploit the po-tential of the JUICE mission. Therefore, the JUICE team is aiming to define high priority targets on both Gany-mede's and Callisto's surfaces to support the coordination of the planning activities by the individual instrument teams. Based on the science objectives of the JUICE mission and the most recent knowledge of Ganymede's and Callisto's geologic evolution we propose a collection of Regions of Interest (RoIs), which characterize surface features and terrain types representing important traces of geologic processes, from past and/or present cryovolcanic and tectonic activity to space weathering processes, which are crucial to understand the geologic evolution of Ganymede and Callisto. The proposed evaluation of RoIs is based on their scientific importance as well as on the opportunities and conditions to observe them during the currently discussed mission profile.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy