SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huys Quentin J. M.) "

Sökning: WFRF:(Huys Quentin J. M.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Guitart-Masip, Marc, et al. (författare)
  • Differential, but not opponent, effects of L-DOPA and citalopram on action learning with reward and punishment
  • 2014
  • Ingår i: Psychopharmacology. - : Springer Science and Business Media LLC. - 0033-3158 .- 1432-2072. ; 231:5, s. 955-966
  • Tidskriftsartikel (refereegranskat)abstract
    • Decision-making involves two fundamental axes of control namely valence, spanning reward and punishment, and action, spanning invigoration and inhibition. We recently exploited a go/no-go task whose contingencies explicitly decouple valence and action to show that these axes are inextricably coupled during learning. This results in a disadvantage in learning to go to avoid punishment and in learning to no-go to obtain a reward. The neuromodulators dopamine and serotonin are likely to play a role in these asymmetries: Dopamine signals anticipation of future rewards and is also involved in an invigoration of motor responses leading to reward, but it also arbitrates between different forms of control. Conversely, serotonin is implicated in motor inhibition and punishment processing. To investigate the role of dopamine and serotonin in the interaction between action and valence during learning. We combined computational modeling with pharmacological manipulation in 90 healthy human volunteers, using levodopa and citalopram to affect dopamine and serotonin, respectively. We found that, after administration of levodopa, action learning was less affected by outcome valence when compared with the placebo and citalopram groups. This highlights in this context a predominant effect of levodopa in controlling the balance between different forms of control. Citalopram had distinct effects, increasing participants' tendency to perform active responses independent of outcome valence, consistent with a role in decreasing motor inhibition. Our findings highlight the rich complexities of the roles played by dopamine and serotonin during instrumental learning.
  •  
2.
  • Deserno, Lorenz, et al. (författare)
  • Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:5, s. 1595-1600
  • Tidskriftsartikel (refereegranskat)abstract
    • Whether humans make choices based on a deliberative “model-based” or a reflexive “model-free” system of behavioral control remains an ongoing topic of research. Dopamine is implicated in motivational drive as well as in planning future actions. Here, we demonstrate that higher presynaptic dopamine in human ventral striatum is associated with more pronounced model-based behavioral control, as well as an enhanced coding of model-based signatures in lateral prefrontal cortex and diminished coding of model-free learning signals in ventral striatum. Our study links ventral striatal presynaptic dopamine to a balance between two distinct modes of behavioral control in humans. The findings have implications for neuropsychiatric diseases associated with alterations of dopamine neurotransmission and a disrupted balance of behavioral control.Dual system theories suggest that behavioral control is parsed between a deliberative “model-based” and a more reflexive “model-free” system. A balance of control exerted by these systems is thought to be related to dopamine neurotransmission. However, in the absence of direct measures of human dopamine, it remains unknown whether this reflects a quantitative relation with dopamine either in the striatum or other brain areas. Using a sequential decision task performed during functional magnetic resonance imaging, combined with striatal measures of dopamine using [18F]DOPA positron emission tomography, we show that higher presynaptic ventral striatal dopamine levels were associated with a behavioral bias toward more model-based control. Higher presynaptic dopamine in ventral striatum was associated with greater coding of model-based signatures in lateral prefrontal cortex and diminished coding of model-free prediction errors in ventral striatum. Thus, interindividual variability in ventral striatal presynaptic dopamine reflects a balance in the behavioral expression and the neural signatures of model-free and model-based control. Our data provide a novel perspective on how alterations in presynaptic dopamine levels might be accompanied by a disruption of behavioral control as observed in aging or neuropsychiatric diseases such as schizophrenia and addiction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy