SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huyskens Magdalena) "

Sökning: WFRF:(Huyskens Magdalena)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gernigon, Laurent, et al. (författare)
  • Understanding volcanic margin evolution through the lens of Norway's youngest granite
  • 2024
  • Ingår i: Terra Nova. - : John Wiley & Sons. - 0954-4879 .- 1365-3121.
  • Tidskriftsartikel (refereegranskat)abstract
    • Three boreholes drilled during the International Ocean Discovery Program (IODP) Expedition 396 have yielded unexpected findings of altered granitic rocks covered by basalt flows, interbedded sediments and glacial mud near the continent-ocean transition of the mid-Norwegian margin. U-Pb and K-Ar geochronological analyses were conducted on both protolithic and authigenically formed K-bearing minerals to determine the age of granite crystallisation and subsequent alteration episodes. The granite's crystallisation age based on 104 zircons is 56.3 ± 0.2 Ma, and subsequent exhumation along with alteration/weathering events took place between 54.7 ± 1 and 37.1 ± 1 Ma. This intrusion represents the youngest granite discovered in Norway and intruded at an extremely shallow crustal level before a rapid rift-to-drift transition. The shallow emplacement of granitic rock and its fast exhumation before and during the onset of volcanism holds significant implications for the syn- and post-breakup tectonic evolution of volcanic margins.
  •  
2.
  • Jenniskens, Peter, et al. (författare)
  • The impact and recovery of asteroid 2018 LA
  • 2021
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 56:4, s. 844-893
  • Tidskriftsartikel (refereegranskat)abstract
    • The June 2, 2018 impact of asteroid 2018 LA over Botswana is only the second asteroid detected in space prior to impacting over land. Here, we report on the successful recovery of meteorites. Additional astrometric data refine the approach orbit and define the spin period and shape of the asteroid. Video observations of the fireball constrain the asteroid's position in its orbit and were used to triangulate the location of the fireball's main flare over the Central Kalahari Game Reserve. Twenty‐three meteorites were recovered. A consortium study of eight of these classifies Motopi Pan as an HED polymict breccia derived from howardite, cumulate and basaltic eucrite, and diogenite lithologies. Before impact, 2018 LA was a solid rock of ~156 cm diameter with high bulk density ~2.85 g cm−3, a relatively low albedo pV ~ 0.25, no significant opposition effect on the asteroid brightness, and an impact kinetic energy of ~0.2 kt. The orbit of 2018 LA is consistent with an origin at Vesta (or its Vestoids) and delivery into an Earth‐impacting orbit via the ν6 resonance. The impact that ejected 2018 LA in an orbit toward Earth occurred 22.8 ± 3.8 Ma ago. Zircons record a concordant U‐Pb age of 4563 ± 11 Ma and a consistent 207Pb/206Pb age of 4563 ± 6 Ma. A much younger Pb‐Pb phosphate resetting age of 4234 ± 41 Ma was found. From this impact chronology, we discuss what is the possible source crater of Motopi Pan and the age of Vesta's Veneneia impact basin.
  •  
3.
  • Liao, Shi Yong, et al. (författare)
  • Absolute dating of the L-chondrite parent body breakup with high-precision U–Pb zircon geochronology from Ordovician limestone
  • 2020
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X. ; 547
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakup of the L-chondrite parent body (LCPB) in the mid-Ordovician is the largest documented asteroid breakup event during the past 3 Gyr. It affected Earth by a dramatic increase in the flux of L-chondritic material and left prominent traces in both meteorite and sedimentary records. A precise constraint on the timing of the LCPB breakup is important when evaluating the terrestrial biotic and climatic effects of the event, as well as for global stratigraphic correlations. Direct dating using heavily shocked L chondrites is hampered by both incomplete initial K-Ar degassing and isotopic resetting by later impact events. In order to better constrain the absolute age of this event we carried out high-precision U–Pb dating of zircons from three limestone beds recording discrete volcanic ash fallouts within mid-Ordovician strata in southern Sweden. These strata are rich in fossilized L-chondritic meteorites (1-20 cm large) that arrived on Earth shortly after the breakup event. Zircons from the ash-bearing layers provide stratigraphically consistent depositional ages that range from 464.22 ± 0.37 Ma to 465.01 ± 0.26 Ma. Combined with recently published 3He profiles that pinpoint the arrival on Earth of the first dust from the breakup, and sedimentation rates constrained by cosmogenic 21Ne in the fossil meteorites, the LCPB breakup is estimated to have occurred at 465.76 ± 0.30 Ma. This provides the presently most precise absolute dating of the LCPB breakup, enabling a robust global stratigraphic correlation of bounding strata. Based on our new U–Pb data for the ash-bearing beds, the absolute ages for the boundaries of biozones and Dapingian–Floian stages overlap within error with those given by the 2012 Geological Timescale and require no modification.
  •  
4.
  •  
5.
  • Unsalan, Ozan, et al. (författare)
  • The Sariçiçek howardite fall in Turkey : Source crater of HED meteorites on Vesta and impact risk of Vestoids
  • 2019
  • Ingår i: Meteoritics and Planetary Science. - Hoboken : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 54:5, s. 953-1008
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sariçiçek howardite meteorite shower consisting of 343 documented stones occurred on September 2, 2015 in Turkey and is the first documented howardite fall. Cosmogenic isotopes show that Sariçiçek experienced a complex cosmic‐ray exposure history, exposed during ~12–14 Ma in a regolith near the surface of a parent asteroid, and that an ~1 m sized meteoroid was launched by an impact 22 ± 2 Ma ago to Earth (as did one‐third of all HED meteorites). SIMS dating of zircon and baddeleyite yielded 4550.4 ± 2.5 Ma and 4553 ± 8.8 Ma crystallization ages for the basaltic magma clasts. The apatite U‐Pb age of 4525 ± 17 Ma, K‐Ar age of ~3.9 Ga, and the U,Th‐He ages of 1.8 ± 0.7 and 2.6 ± 0.3 Ga are interpreted to represent thermal metamorphic and impact‐related resetting ages, respectively. Petrographic; geochemical; and O‐, Cr‐, and Ti‐isotopic studies confirm that Sariçiçek belongs to the normal clan of HED meteorites. Petrographic observations and analysis of organic material indicate a small portion of carbonaceous chondrite material in the Sariçiçek regolith and organic contamination of the meteorite after a few days on soil. Video observations of the fall show an atmospheric entry at 17.3 ± 0.8 km s−1 from NW; fragmentations at 37, 33, 31, and 27 km altitude; and provide a pre‐atmospheric orbit that is the first dynamical link between the normal HED meteorite clan and the inner Main Belt. Spectral data indicate the similarity of Sariçiçek with the Vesta asteroid family (V‐class) spectra, a group of asteroids stretching to delivery resonances, which includes (4) Vesta. Dynamical modeling of meteoroid delivery to Earth shows that the complete disruption of a ~1 km sized Vesta family asteroid or a ~10 km sized impact crater on Vesta is required to provide sufficient meteoroids ≤4 m in size to account for the influx of meteorites from this HED clan. The 16.7 km diameter Antionia impact crater on Vesta was formed on terrain of the same age as given by the 4He retention age of Sariçiçek. Lunar scaling for crater production to crater counts of its ejecta blanket show it was formed ~22 Ma ago.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy