SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hvidsten Torgeir R. 1975 ) "

Sökning: WFRF:(Hvidsten Torgeir R. 1975 )

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lin, Yao-Cheng, et al. (författare)
  • Functional and evolutionary genomic inferences in Populus through genome and population sequencing of American and European aspen
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 115:46, s. E10970-E10978
  • Tidskriftsartikel (refereegranskat)abstract
    • The Populus genus is one of the major plant model systems, but genomic resources have thus far primarily been available for poplar species, and primarily Populus trichocarpa (Torr. & Gray), which was the first tree with a whole-genome assembly. To further advance evolutionary and functional genomic analyses in Populus, we produced genome assemblies and population genetics resources of two aspen species, Populus tremula L. and Populus tremuloides Michx. The two aspen species have distributions spanning the Northern Hemisphere, where they are keystone species supporting a wide variety of dependent communities and produce a diverse array of secondary metabolites. Our analyses show that the two aspens share a similar genome structure and a highly conserved gene content with P. trichocarpa but display substantially higher levels of heterozygosity. Based on population resequencing data, we observed widespread positive and negative selection acting on both coding and noncoding regions. Furthermore, patterns of genetic diversity and molecular evolution in aspen are influenced by a number of features, such as expression level, coexpression network connectivity, and regulatory variation. To maximize the community utility of these resources, we have integrated all presented data within the PopGenIE web resource (PopGenIE.org).
  •  
2.
  • Abreu, Ilka, et al. (författare)
  • A metabolite roadmap of the wood-forming tissue in Populus tremula
  • 2020
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 228:5, s. 1559-1572
  • Tidskriftsartikel (refereegranskat)abstract
    • Wood, or secondary xylem, is the product of xylogenesis, a developmental process that begins with the proliferation of cambial derivatives and ends with mature xylem fibers and vessels with lignified secondary cell walls. Fully mature xylem has undergone a series of cellular processes, including cell division, cell expansion, secondary wall formation, lignification and programmed cell death. A complex network of interactions between transcriptional regulators and signal transduction pathways controls wood formation. However, the role of metabolites during this developmental process has not been comprehensively characterized. To evaluate the role of metabolites during wood formation, we performed a high spatial resolution metabolomics study of the wood-forming zone of Populus tremula, including laser dissected aspen ray and fiber cells. We show that metabolites show specific patterns within the wood-forming zone, following the differentiation process from cell division to cell death. The data from profiled laser dissected aspen ray and fiber cells suggests that these two cell types host distinctly different metabolic processes. Furthermore, by integrating previously published transcriptomic and proteomic profiles generated from the same trees, we provide an integrative picture of molecular processes, for example, deamination of phenylalanine during lignification is of critical importance for nitrogen metabolism during wood formation.
  •  
3.
  •  
4.
  • Schubert, Marian, et al. (författare)
  • Evolution of Cold Acclimation and Its Role in Niche Transition in the Temperate Grass Subfamily Pooideae
  • 2019
  • Ingår i: Plant Physiology. - : American Society of Plant Biologists. - 0032-0889 .- 1532-2548. ; 180:1, s. 404-419
  • Tidskriftsartikel (refereegranskat)abstract
    • The grass subfamily Pooideae dominates the grass floras in cold temperate regions and has evolved complex physiological adaptations to cope with extreme environmental conditions like frost, winter, and seasonality. One such adaptation is cold acclimation, wherein plants increase their frost tolerance in response to gradually falling temperatures and shorter days in the autumn. However, understanding how complex traits like cold acclimation evolve remains a major challenge in evolutionary biology. Here, we investigated the evolution of cold acclimation in Pooideae and found that a phylogenetically diverse set of Pooideae species displayed cold acclimation capacity. However, comparing differential gene expression after cold treatment in transcriptomes of five phylogenetically diverse species revealed widespread species-specific responses of genes with conserved sequences. Furthermore, we studied the correlation between gene family size and number of cold-responsive genes as well as between selection pressure on coding sequences of genes and their cold responsiveness. We saw evidence of protein-coding and regulatory sequence evolution as well as the origin of novel genes and functions contributing toward evolution of a cold response in Pooideae. Our results reflect that selection pressure resulting from global cooling must have acted on already diverged lineages. Nevertheless, conservation of cold-induced gene expression of certain genes indicates that the Pooideae ancestor may have possessed some molecular machinery to mitigate cold stress. Evolution of adaptations to seasonally cold climates is regarded as particularly difficult. How Pooideae evolved to transition from tropical to temperate biomes sheds light on how complex traits evolve in the light of climate changes.
  •  
5.
  • Varadharajan, Srinidhi, et al. (författare)
  • The Grayling Genome Reveals Selection on Gene Expression Regulation after Whole-Genome Duplication
  • 2018
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 10:10, s. 2785-2800
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-genome duplication (WGD) has been a major evolutionary driver of increased genomic complexity in vertebrates. One such event occurred in the salmonid family ∼80 Ma (Ss4R) giving rise to a plethora of structural and regulatory duplicate-driven divergence, making salmonids an exemplary system to investigate the evolutionary consequences of WGD. Here, we present a draft genome assembly of European grayling (Thymallus thymallus) and use this in a comparative framework to study evolution of gene regulation following WGD. Among the Ss4R duplicates identified in European grayling and Atlantic salmon (Salmo salar), one-third reflect nonneutral tissue expression evolution, with strong purifying selection, maintained over ∼50 Myr. Of these, the majority reflect conserved tissue regulation under strong selective constraints related to brain and neural-related functions, as well as higher-order protein–protein interactions. A small subset of the duplicates have evolved tissue regulatory expression divergence in a common ancestor, which have been subsequently conserved in both lineages, suggestive of adaptive divergence following WGD. These candidates for adaptive tissue expression divergence have elevated rates of protein coding- and promoter-sequence evolution and are enriched for immune- and lipid metabolism ontology terms. Lastly, lineage-specific duplicate divergence points toward underlying differences in adaptive pressures on expression regulation in the nonanadromous grayling versus the anadromous Atlantic salmon. Our findings enhance our understanding of the role of WGD in genome evolution and highlight cases of regulatory divergence of Ss4R duplicates, possibly related to a niche shift in early salmonid evolution.
  •  
6.
  • Curci, Pasquale Luca, et al. (författare)
  • Identification of growth regulators using cross-species network analysis in plants
  • 2022
  • Ingår i: Plant Physiology. - : Oxford University Press. - 0032-0889 .- 1532-2548. ; 190:4, s. 2350-2365
  • Tidskriftsartikel (refereegranskat)abstract
    • With the need to increase plant productivity, one of the challenges plant scientists are facing is to identify genes that play a role in beneficial plant traits. Moreover, even when such genes are found, it is generally not trivial to transfer this knowledge about gene function across species to identify functional orthologs. Here, we focused on the leaf to study plant growth. First, we built leaf growth transcriptional networks in Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and aspen (Populus tremula). Next, known growth regulators, here defined as genes that when mutated or ectopically expressed alter plant growth, together with cross-species conserved networks, were used as guides to predict novel Arabidopsis growth regulators. Using an in-depth literature screening, 34 out of 100 top predicted growth regulators were confirmed to affect leaf phenotype when mutated or overexpressed and thus represent novel potential growth regulators. Globally, these growth regulators were involved in cell cycle, plant defense responses, gibberellin, auxin, and brassinosteroid signaling. Phenotypic characterization of loss-of-function lines confirmed two predicted growth regulators to be involved in leaf growth (NPF6.4 and LATE MERISTEM IDENTITY2). In conclusion, the presented network approach offers an integrative cross-species strategy to identify genes involved in plant growth and development.
  •  
7.
  • Freyhult, Eva, et al. (författare)
  • Challenges in microarray class discovery : a comprehensive examination of normalization, gene selection and clustering
  • 2010
  • Ingår i: BMC Bioinformatics. - : BioMed Central. - 1471-2105. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization.Result: We evaluated 2780 cluster analysis methods on seven publicly available 2-channel microarray data sets with common reference designs. Each cluster analysis method differed in data normalization (5 normalizations were considered), missing value imputation (2), standardization of data (2), gene selection (19) or clustering method (11). The cluster analyses are evaluated using known classes, such as cancer types, and the adjusted Rand index. The performances of the different analyses vary between the data sets and it is difficult to give general recommendations. However, normalization, gene selection and clustering method are all variables that have a significant impact on the performance. In particular, gene selection is important and it is generally necessary to include a relatively large number of genes in order to get good performance. Selecting genes with high standard deviation or using principal component analysis are shown to be the preferred gene selection methods. Hierarchical clustering using Ward's method, k-means clustering and Mclust are the clustering methods considered in this paper that achieves the highest adjusted Rand. Normalization can have a significant positive impact on the ability to cluster individuals, and there are indications that background correction is preferable, in particular if the gene selection is successful. However, this is an area that needs to be studied further in order to draw any general conclusions.Conclusions: The choice of cluster analysis, and in particular gene selection, has a large impact on the ability to cluster individuals correctly based on expression profiles. Normalization has a positive effect, but the relative performance of different normalizations is an area that needs more research. In summary, although clustering, gene selection and normalization are considered standard methods in bioinformatics, our comprehensive analysis shows that selecting the right methods, and the right combinations of methods, is far from trivial and that much is still unexplored in what is considered to be the most basic analysis of genomic data.
  •  
8.
  • Gandla, Madhavi Latha, et al. (författare)
  • Overexpression of vesicle-associated membrane protein PttVAP27-17 as a tool to improve biomass production and the overall saccharification yields in Populus trees
  • 2021
  • Ingår i: Biotechnology for Biofuels. - : Springer Science and Business Media LLC. - 1754-6834. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Bioconversion of wood into bioproducts and biofuels is hindered by the recalcitrance of woody raw material to bioprocesses such as enzymatic saccharification. Targeted modification of the chemical composition of the feedstock can improve saccharification but this gain is often abrogated by concomitant reduction in tree growth. Results In this study, we report on transgenic hybrid aspen (Populus tremula x tremuloides) lines that showed potential to increase biomass production both in the greenhouse and after 5 years of growth in the field. The transgenic lines carried an overexpression construct for Populus tremula x tremuloides vesicle-associated membrane protein (VAMP)-associated protein PttVAP27-17 that was selected from a gene-mining program for novel regulators of wood formation. Analytical-scale enzymatic saccharification without any pretreatment revealed for all greenhouse-grown transgenic lines, compared to the wild type, a 20-44% increase in the glucose yield per dry weight after enzymatic saccharification, even though it was statistically significant only for one line. The glucose yield after enzymatic saccharification with a prior hydrothermal pretreatment step with sulfuric acid was not increased in the greenhouse-grown transgenic trees on a dry-weight basis, but increased by 26-50% when calculated on a whole biomass basis in comparison to the wild-type control. Tendencies to increased glucose yields by up to 24% were present on a whole tree biomass basis after acidic pretreatment and enzymatic saccharification also in the transgenic trees grown for 5 years on the field when compared to the wild-type control. Conclusions The results demonstrate the usefulness of gene-mining programs to identify novel genes with the potential to improve biofuel production in tree biotechnology programs. Furthermore, multi-omic analyses, including transcriptomic, proteomic and metabolomic analyses, performed here provide a toolbox for future studies on the function of VAP27 proteins in plants.
  •  
9.
  • Hvidsten, Torgeir R., 1975- (författare)
  • Predicting Function of Genes and Proteins from Sequence, Structure and Expression Data
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Functional genomics refers to the task of determining gene and protein function for whole genomes, and requires computational analysis of large amounts of biological data including DNA and protein sequences, protein structures and gene expressions. Machine learning methods provide a powerful tool to this end by first inducing general models from such data and already characterized genes or proteins and then by providing hypotheses on the functions of the remaining, uncharacterized cases.This study contains four parts giving novel contributions to functional genomics through the analysis of different biological data and different aspects of biological functions. Gene Ontology played an important part in this research providing a controlled vocabulary for describing the cellular roles of genes and proteins in terms of specific molecular functions and broad biological processes.The first part used gene expression time profiles to learn models capable of predicting the participation of genes in biological processes. The model consists of IF-THEN rules associating biological processes with minimal set of discrete changes in expression level over limited periods of time. The models were used to hypothesize new biological processes for both characterized and uncharacterized genes.The second part investigated the combinatorial nature of gene regulation by inducing IF-THEN rules associating minimal combinations of sequence motifs common to genes with similar expression profiles. Such combinations were shown to be significantly correlated to function, and provided hypotheses on the mechanisms behind the regulation of gene expression in several biological responses.The third part used a novel concept of local descriptors of protein structure to investigate sequence patterns governing protein structure at a local level and to predict the topological class (fold) of protein domains from sequence. Finally, the fourth part used local descriptors to represent protein structure and induced IF-THEN rule models predicting molecular function from structure.
  •  
10.
  • Lundberg-Felten, Judith, et al. (författare)
  • Ethylene signaling induces gelatinous layers with typical features of tension wood in hybrid aspen
  • 2018
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 218:3, s. 999-1014
  • Tidskriftsartikel (refereegranskat)abstract
    • The phytohormone ethylene impacts secondary stem growth in plants by stimulating cambial activity, xylem development and fiber over vessel formation. We report the effect of ethylene on secondary cell wall formation and the molecular connection between ethylene signaling and wood formation. We applied exogenous ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) to wild-type and ethylene-insensitive hybrid aspen trees (Populus tremulaxtremuloides) and studied secondary cell wall anatomy, chemistry and ultrastructure. We furthermore analyzed the transcriptome (RNA Seq) after ACC application to wild-type and ethylene-insensitive trees. We demonstrate that ACC and ethylene induce gelatinous layers (G-layers) and alter the fiber cell wall cellulose microfibril angle. G-layers are tertiary wall layers rich in cellulose, typically found in tension wood of aspen trees. A vast majority of transcripts affected by ACC are downstream of ethylene perception and include a large number of transcription factors (TFs). Motif-analyses reveal potential connections between ethylene TFs (Ethylene Response Factors (ERFs), ETHYLENE INSENSITIVE 3/ETHYLENE INSENSITIVE3-LIKE1 (EIN3/EIL1)) and wood formation. G-layer formation upon ethylene application suggests that the increase in ethylene biosynthesis observed during tension wood formation is important for its formation. Ethylene-regulated TFs of the ERF and EIN3/EIL1 type could transmit the ethylene signal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15
Typ av publikation
tidskriftsartikel (12)
doktorsavhandling (2)
annan publikation (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Hvidsten, Torgeir R. ... (13)
Delhomme, Nicolas (4)
Mähler, Niklas (4)
Street, Nathaniel R. ... (3)
Moritz, Thomas (2)
Abreu, Ilka (2)
visa fler...
Sundberg, Björn (2)
Jansson, Stefan, 195 ... (2)
Street, Nathaniel, 1 ... (2)
Robinson, Kathryn M, ... (2)
Schiffthaler, Bastia ... (2)
Lundberg-Felten, Jud ... (2)
Mannapperuma, Chanak ... (2)
Zhang, Jie (1)
Liu, H. (1)
Trygg, Johan (1)
Ingvarsson, Pär K (1)
Niittylä, Totte (1)
Schubert, Marian (1)
Johansson, Annika (1)
Sokolowska, Katarzyn ... (1)
MOLLER, L (1)
Tuominen, Hannele (1)
Inzé, Dirk (1)
Kangasjärvi, Jaakko (1)
Grabherr, Manfred (1)
Nilsson, Ove (1)
Nystedt, Björn (1)
Schiffthaler, Bastia ... (1)
Jönsson, Leif J (1)
Johansson, Anna C. V ... (1)
Jentoft, Sissel (1)
Landfors, Mattias, 1 ... (1)
Mellerowicz, Ewa (1)
Wingsle, Gunnar (1)
Gorzsás, András (1)
Bygdell, Joakim (1)
Scofield, Douglas G. ... (1)
Hertzberg, Magnus (1)
Wang, Jing (1)
Jakobsen, Kjetill S. (1)
Höppner, Marc P. (1)
Van Montagu, Marc (1)
Gandla, Madhavi Lath ... (1)
Tuominen, Hannele, 1 ... (1)
Wilczyński, Bartek (1)
Rüggeberg, Markus (1)
Freyhult, Eva (1)
Serrano, A (1)
Van de Peer, Yves (1)
visa färre...
Lärosäte
Umeå universitet (13)
Sveriges Lantbruksuniversitet (6)
Uppsala universitet (3)
Göteborgs universitet (1)
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Lantbruksvetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy