SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hyoty Heikki) "

Sökning: WFRF:(Hyoty Heikki)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anagandula, Mahesh, et al. (författare)
  • Infection of Human Islets of Langerhans With Two Strains of Coxsackie B Virus Serotype 1 : Assessment of Virus Replication, Degree of Cell Death and Induction of Genes Involved in the Innate Immunity Pathway
  • 2014
  • Ingår i: Journal of Medical Virology. - : Wiley. - 0146-6615 .- 1096-9071. ; 86:8, s. 1402-1411
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes mellitus is believed to be triggered, in part, by one or more environmental factors and human enteroviruses (HEVs) are among the candidates. Therefore, this study has examined whether two strains of HEV may differentially affect the induction of genes involved in pathways leading to the synthesis of islet hormones, chemokines and cytokines in isolated, highly purified, human islets. Isolated, purified human pancreatic islets were infected with strains of Coxsackievirus B1. Viral replication and the degree of CPE/islet dissociation were monitored. The expression of insulin, glucagon, CXCL10, TLR3, IF1H1, CCL5, OAS-1, IFN beta, and DDX58 was analyzed. Both strains replicated in islets but only one of strain caused rapid islet dissociation/CPE. Expression of the insulin gene was reduced during infection of islets with either viral strain but the gene encoding glucagon was unaffected. All genes analyzed which are involved in viral sensing and the development of innate immunity were induced by Coxsackie B viruses, with the notable exception of TLR3. There was no qualitative difference in the expression pattern between each strain but the magnitude of the response varied between donors. The lack of virus induced expression of TLR3, together with the differential regulation of IF1H1, OAS1 and IFN beta, (each of which has polymorphic variants influence the predisposition to type 1 diabetes), that might result in defective clearance of virus from islet cells. The reduced expression of the insulin gene and the unaffected expression of the gene encoding glucagon by Coxsackie B1 infection is consistent with the preferential beta-cell tropism of the virus.
  •  
2.
  • Busse, Niels, et al. (författare)
  • Detection and localization of viral infection in the pancreas of patients with type 1 diabetes using short fluorescently-labelled oligonucleotide probes
  • 2017
  • Ingår i: Oncotarget. - : IMPACT JOURNALS LLC. - 1949-2553. ; 8:8, s. 12620-12636
  • Tidskriftsartikel (refereegranskat)abstract
    • Enteroviruses, specifically of the Coxsackie B virus family, have been implicated in triggering islet autoimmunity and type 1 diabetes, but their presence in pancreata of patients with diabetes has not been fully confirmed. To detect the presence of very low copies of the virus genome in tissue samples from T1D patients, we designed a panel of fluorescently labeled oligonucleotide probes, each of 17-22 nucleotides in length with a unique sequence to specifically bind to the enteroviral genome of the picornaviridae family. With these probes enteroviral RNA was detected with high sensitivity and specificity in infected cells and tissues, including in FFPE pancreas sections from patients with T1D. Detection was not impeded by variations in sample processing and storage thereby overcoming the potential limitations of fragmented RNA. Co-staining of small RNA probes in parallel with classical immunstaining enabled virus detection in a cell-specific manner and more sensitively than by viral protein.
  •  
3.
  • Edwards, Robert A., et al. (författare)
  • Global phylogeography and ancient evolution of the widespread human gut virus crAssphage
  • 2019
  • Ingår i: Nature Microbiology. - : Springer Science and Business Media LLC. - 2058-5276. ; 4:10, s. 1727-1736
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments. Here, we investigate the origin, evolution and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboration, we obtained DNA sequences of crAssphage from more than one-third of the world's countries and showed that the phylogeography of crAssphage is locally clustered within countries, cities and individuals. We also found fully colinear crAssphage-like genomes in both Old-World and New-World primates, suggesting that the association of crAssphage with primates may be millions of years old. Finally, by exploiting a large cohort of more than 1,000 individuals, we tested whether crAssphage is associated with bacterial taxonomic groups of the gut microbiome, diverse human health parameters and a wide range of dietary factors. We identified strong correlations with different clades of bacteria that are related to Bacteroidetes and weak associations with several diet categories, but no significant association with health or disease. We conclude that crAssphage is a benign cosmopolitan virus that may have coevolved with the human lineage and is an integral part of the normal human gut virome.
  •  
4.
  • Hamalainen, Sanna, et al. (författare)
  • Coxsackievirus B1 Reveals Strain Specific Differences in Plasmacytoid Dendritic Cell Mediated Immunogenicity
  • 2014
  • Ingår i: Journal of Medical Virology. - : Wiley. - 0146-6615 .- 1096-9071. ; 86:8, s. 1412-1420
  • Tidskriftsartikel (refereegranskat)abstract
    • Enterovirus infections are usually mild but can also cause severe illnesses and play a role in chronic diseases, such as cardiomyopathies and type 1 diabetes. Host response to the invading virus can markedly modulate the course of the infection, and this response varies between individuals due to the polymorphism of immune response genes. However, it is currently not known if virus strains also differ in their ability to stimulate the host immune system. Coxsackievirus B1 (CBV1) causes severe epidemics in young infants and it has recently been connected with type 1 diabetes in seroepidemiological studies. This study evaluated the ability of different field isolates of CBV1 to induce innate immune responses in PBMCs. CBV1 strains differed markedly in their capacity to induce innate immune responses. Out of the 18 tested CBV1 strains two induced exceptionally strong alpha interferon (IFN-alpha) response in PBMC cultures. The responding cell type was found to be the plasmacytoid dendritic cell. Such a strong innate immune response was accompanied by an up-regulation of several other immune response genes and secretion of cytokines, which modulate inflammation, and adaptive immune responses. These results suggest that enterovirus-induced immune activation depends on the virus strain. It is possible that the immunotype of the virus modulates the course of the infection and plays a role in the pathogenesis of chronic immune-mediated enterovirus diseases.  
  •  
5.
  •  
6.
  • Laiho, Jutta E., et al. (författare)
  • Relative sensitivity of immunohistochemistry, multiple reaction monitoring mass spectrometry, in situ hybridization and PCR to detect Coxsackievirus B1 in A549 cells
  • 2016
  • Ingår i: Journal of Clinical Virology. - : Elsevier BV. - 1386-6532 .- 1873-5967. ; 77, s. 21-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Enteroviruses (EVs) have been linked to the pathogenesis of several diseases and there is a collective need to develop improved methods for the detection of these viruses in tissue samples. Objectives: This study evaluates the relative sensitivity of immunohistochemistry (IHC), proteomics, in situ hybridization (ISH) and RT-PCR to detect one common EV, Coxsackievirus B1 ( CVB1), in acutely infected human A549 cells in vitro. Study design: A549 cells were infected with CVB1 and diluted with uninfected A549 cells to produce a limited dilution series in which the proportion of infected cells ranged from 10-1 to 10-8. Analyses were carried out by several laboratories using IHC with different anti-EV antibodies, ISH with both ViewRNA and RNAScope systems, liquid chromatography multiple reaction monitoring mass spectrometry (LC/MRM/MS/MS), and two modifications of RT-PCR. Results: RT-PCR was the most sensitive method for EV detection yielding positive signals in the most diluted sample (10-8). LC/MRM/MS/MS detected viral peptides at dilutions as high as 10-7. The sensitivity of IHC depended on the antibody used, and the most sensitive antibody (Dako clone 5D8/1) detected virus proteins at a dilution of 10(-6), while ISH detected the virus at dilutions of 10(-4). Conclusions: All methods were able to detect CVB1 in infected A549 cells. RT-PCR was most sensitive followed by LC/MRM/MS/MS and then IHC. The results from this in vitro survey suggest that all methods are suitable tools for EV detection but that their differential sensitivities need to be considered when interpreting the results from such studies.
  •  
7.
  • Oikarinen, Sami, et al. (författare)
  • Characterisation of enterovirus RNA detected in the pancreas and other specimens of live patients with newly diagnosed type 1 diabetes in the DiViD study
  • 2021
  • Ingår i: Diabetologia. - : Springer Nature. - 0012-186X .- 1432-0428. ; 64:11, s. 2491-2501
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis The Diabetes Virus Detection (DiViD) study is the first study to laparoscopically collect pancreatic tissue and purified pancreatic islets together with duodenal mucosa, serum, peripheral blood mononuclear cells (PBMCs) and stools from six live adult patients (age 24-35 years) with newly diagnosed type 1 diabetes. The presence of enterovirus (EV) in the pancreatic islets of these patients has previously been reported. Methods In the present study we used reverse transcription quantitative real-time PCR (RT-qPCR) and sequencing to characterise EV genomes present in different tissues to understand the nature of infection in these individuals. Results All six patients were found to be EV-positive by RT-qPCR in at least one of the tested sample types. Four patients were EV-positive in purified islet culture medium, three in PBMCs, one in duodenal biopsy and two in stool, while serum was EVnegative in all individuals. Sequencing the 5' untranslated region of these EVs suggested that all but one belonged to enterovirus B species. One patient was EV-positive in all these sample types except for serum. Sequence analysis revealed that the virus strain present in the isolated islets of this patient was different from the strain found in other sample types. None of the islet-resident viruses could be isolated using EV-permissive cell lines. Conclusions/interpretation EV RNA can be frequently detected in various tissues of patients with type 1 diabetes. At least in some patients, the EV strain in the pancreatic islets may represent a slowly replicating persisting virus.
  •  
8.
  • Oikarinen, Sami, et al. (författare)
  • Virus Antibody Survey in Different European Populations Indicates Risk Association Between Coxsackievirus B1 and Type 1 Diabetes
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 63:2, s. 655-662
  • Tidskriftsartikel (refereegranskat)abstract
    • Enteroviruses (EVs) have been connected to type 1 diabetes in various studies. The current study evaluates the association between specific EV subtypes and type 1 diabetes by measuring type-specific antibodies against the group B coxsackieviruses (CVBs), which have been linked to diabetes in previous surveys. Altogether, 249 children with newly diagnosed type 1 diabetes and 249 control children matched according to sampling time, sex, age, and country were recruited in Finland, Sweden, England, France, and Greece between 2001 and 2005 (mean age 9 years; 55% male). Antibodies against CVB1 were more frequent among diabetic children than among control children (odds ratio 1.7 [95% CI 1.0-2.9]), whereas other CVB types did not differ between the groups. CVB1-associated risk was not related to HLA genotype, age, or sex. Finnish children had a lower frequency of CVB antibodies than children in other countries. The results support previous studies that suggested an association between CVBs and type 1 diabetes, highlighting the possible role of CVB1 as a diabetogenic virus type.
  •  
9.
  •  
10.
  • Richardson, Sarah J., et al. (författare)
  • Evaluation of the fidelity of immunolabelling obtained with clone 5D8/1, a monoclonal antibody directed against the enteroviral capsid protein, VP1, in human pancreas
  • 2014
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 57:2, s. 392-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesisEnteroviral infection has been implicated in the development of islet autoimmunity in type 1 diabetes and enteroviral antigen expression has been detected by immunohistochemistry in the pancreatic beta cells of patients with recent-onset type 1 diabetes. However, the immunohistochemical evidence relies heavily on the use of a monoclonal antibody, clone 5D8/1, raised against an enteroviral capsid protein, VP1. Recent data suggest that the clone 5D8/1 may also recognise non-viral antigens; in particular, a component of the mitochondrial ATP synthase (ATP5B) and an isoform of creatine kinase (CKB). Therefore, we evaluated the fidelity of immunolabelling by clone 5D8/1 in the islets of patients with type 1 diabetes.MethodsEnteroviral VP1, CKB and ATP5B expression were analysed by western blotting, RT-PCR and immunocytochemistry in a range of cultured cell lines, isolated human islets and human tissue.ResultsClone 5D8/1 labelled CKB, but not ATP5B, on western blots performed under denaturing conditions. In cultured human cell lines, isolated human islets and pancreas sections from patients with type 1 diabetes, the immunolabelling of ATP5B, CKB and VP1 by 5D8/1 was readily distinguishable. Moreover, in a human tissue microarray displaying more than 80 different cells and tissues, only two (stomach and colon; both of which are potential sites of enterovirus infection) were immunopositive when stained with clone 5D8/1.Conclusions/interpretationWhen used under carefully optimised conditions, the immunolabelling pattern detected in sections of human pancreas with clone 5D8/1 did not reflect cross-reactivity with either ATP5B or CKB. Rather, 5D8/1 is likely to be representative of enteroviral antigen expression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy