SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hyvonen M. T.) "

Sökning: WFRF:(Hyvonen M. T.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hyvonen, R., et al. (författare)
  • The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review
  • 2007
  • Ingår i: New Phytologist. - Cambridge : Wiley. - 0028-646X .- 1469-8137. ; 173:3, s. 463-480
  • Forskningsöversikt (refereegranskat)abstract
    • Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic rate (the main [CO2] response); increasing length of growing season (the main temperature response); and higher leaf-area index (the main N deposition and partly [CO2] response). Soil organic matter will increase with increasing litter input, although priming may decrease the soil C stock initially, but litter quality effects should be minimal (response to [CO2], N deposition, and temperature); will decrease because of increasing temperature; and will increase because of retardation of decomposition with N deposition, although the rate of decomposition of high-quality litter can be increased and that of low-quality litter decreased. Single-factor responses can be misleading because of interactions between factors, in particular those between N and other factors, and indirect effects such as increased N availability from temperature-induced decomposition. In the long term the strength of feedbacks, for example the increasing demand for N from increased growth, will dominate over short-term responses to single factors. However, management has considerable potential for controlling the C store.
  •  
2.
  • Li, Q., et al. (författare)
  • Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce
  • 2021
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27, s. 1941-1953
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is considered an important factor for many chronic diseases, including diabetes, cardiovascular disease and cancer. The expansion of adipose tissue in obesity is due to an increase in both adipocyte progenitor differentiation and mature adipocyte cell size. Adipocytes, however, are thought to be unable to divide or enter the cell cycle. We demonstrate that mature human adipocytes unexpectedly display a gene and protein signature indicative of an active cell cycle program. Adipocyte cell cycle progression associates with obesity and hyperinsulinemia, with a concomitant increase in cell size, nuclear size and nuclear DNA content. Chronic hyperinsulinemia in vitro or in humans, however, is associated with subsequent cell cycle exit, leading to a premature senescent transcriptomic and secretory profile in adipocytes. Premature senescence is rapidly becoming recognized as an important mediator of stress-induced tissue dysfunction. By demonstrating that adipocytes can activate a cell cycle program, we define a mechanism whereby mature human adipocytes senesce. We further show that by targeting the adipocyte cell cycle program using metformin, it is possible to influence adipocyte senescence and obesity-associated adipose tissue inflammation. Studies in mature human adipocytes demonstrate that obesity and hyperinsulinemia can induce reentry into the cell cycle and induce senescence.
  •  
3.
  •  
4.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy