SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Iantchenko Aylwin 1993) "

Sökning: WFRF:(Iantchenko Aylwin 1993)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Testa, D., et al. (författare)
  • LTCC magnetic sensors at EPFL and TCV: Lessons learnt for ITER
  • 2019
  • Ingår i: Fusion Engineering and Design. - : Elsevier BV. - 0920-3796. ; 146, s. 1553-1558
  • Tidskriftsartikel (refereegranskat)abstract
    • Innovative 3D high-frequency magnetic sensors have been designed and manufactured in-house for installation on the Tokamak a Configuration Variable (TCV), and are currently routinely operational. These sensors combine the Low Temperature Co-fired Ceramic (LTCC) and the thick-film technologies, and are in various aspects similar to the majority of the inductive magnetic sensors currently being procured for ITER (290 out of 505 are LTCC-1D). The TCV LTCC-3D magnetic sensors provide measurements in the frequency range up to 1MHz of the perturbations to the toroidal (quasi-parallel: delta B-TOR(similar to)delta B-PAR), vertical (quasi-poloidal: delta B-V(ER)similar to delta B-PO(L)), and radial (delta B-RAD) magnetic field components, the latter being generally different from the component normal to the Last Closed Flux-Surface (delta B-NOR). The LTCC-3D delta B-RAD measurements improve significantly on the corresponding data with the saddle loops, which are mounted onto the wall and have a bandwidth of (similar to)3 kHz (due to the wall penetration time). The LTCC-3D delta B-TOR measurements (not previously available in TCV) provide evidence that certain MHD modes have a finite delta B-P(AR) at the LCFS, as recently calculated for pressure-driven instabilities. The LTCC-3D delta B-PO(L) measurements allow to cross-check the data obtained with the Mirnov coils, and led to the identification of large EM noise pick-up for the Mirnov DAQ. The LTCC-3D data for delta B-POL agree with those obtained with the Mirnov sensors in the frequency range where the respective data acquisition overlap, routinely up to 125kHz, and up to 250kHz in some discharges, when the EM noise pick-up on the Mirnov DAQ is removed. Finally, we look at what lessons can be learnt from our work for the forthcoming procurement, installation and operation of the LTCC-1D sensors in ITER.
  •  
3.
  • Wilkie, George, 1983, et al. (författare)
  • First principles of modelling the stabilization of microturbulence by fast ions
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The observation that fast ions stabilize ion-temperature-gradient-driven microturbulence has profound implications for future fusion reactors. It is also important in optimizing the performance of present-day devices. In this work, we examine in detail the phenomenology of fast ion stabilization and present a reduced model which describes this effect. This model is derived from the high-energy limit of the gyrokinetic equation and extends the existing 'dilution' model to account for nontrivial fast ion kinetics. Our model provides a physically-transparent explanation for the observed stabilization and makes several key qualitative predictions. Firstly, that different classes of fast ions, depending on their radial density or temperature variation, have different stabilizing properties. Secondly, that zonal flows are an important ingredient in this effect precisely because the fast ion zonal response is negligible. Finally, that in the limit of highly-energetic fast ions, their response approaches that of the 'dilution' model; in particular, alpha particles are expected to have little, if any, stabilizing effect on plasma turbulence. We support these conclusions through detailed linear and nonlinear gyrokinetic simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy