SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ibáñez Cristian) "

Sökning: WFRF:(Ibáñez Cristian)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ferrando, Carlos, et al. (författare)
  • Effects of oxygen on post-surgical infections during an individualised perioperative open-lung ventilatory strategy : a randomised controlled trial
  • 2020
  • Ingår i: British Journal of Anaesthesia. - : ELSEVIER SCI LTD. - 0007-0912 .- 1471-6771. ; 124:1, s. 110-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We aimed to examine whether using a high fraction of inspired oxygen (FIO2) in the context of an individualised intra- and postoperative open-lung ventilation approach could decrease surgical site infection (SSI) in patients scheduled for abdominal surgery. Methods: We performed a multicentre, randomised controlled clinical trial in a network of 21 university hospitals from June 6, 2017 to July 19, 2018. Patients undergoing abdominal surgery were randomly assigned to receive a high (0.80) or conventional (0.3) FIO2 during the intraoperative period and during the first 3 postoperative hours. All patients were mechanically ventilated with an open-lung strategy, which included recruitment manoeuvres and individualised positive end-expiratory pressure for the best respiratory-system compliance, and individualised continuous postoperative airway pressure for adequate peripheral oxyhaemoglobin saturation. The primary outcome was the prevalence of SSI within the first 7 postoperative days. The secondary outcomes were composites of systemic complications, length of intensive care and hospital stay, and 6-month mortality. Results: We enrolled 740 subjects: 371 in the high FIO2 group and 369 in the low FIO2 group. Data from 717 subjects were available for final analysis. The rate of SSI during the first postoperative week did not differ between high (8.9%) and low (9.4%) FIO2 groups (relative risk [RR]: 0.94; 95% confidence interval [CI]: 0.59-1.50; P=0.90]). Secondary outcomes, such as atelectasis (7.7% vs 9.8%; RR: 0.77; 95% CI: 0.48-1.25; P=0.38) and myocardial ischaemia (0.6% [n=2] vs 0% [n=0]; P=0.47) did not differ between groups. Conclusions: An oxygenation strategy using high FIO2 compared with conventional FIO2 did not reduce postoperative SSIs in abdominal surgery. No differences in secondary outcomes or adverse events were found.
  •  
3.
  • Ibáñez, Cristian, et al. (författare)
  • Circadian clock components regulate entry and affect exit of seasonal dormancy as well as winter hardiness in Populus trees
  • 2010
  • Ingår i: Plant Physiology. - : ASPB Publications. - 0032-0889 .- 1532-2548. ; 153:4, s. 1823-1833
  • Tidskriftsartikel (refereegranskat)abstract
    • This study addresses the role of the circadian clock in the seasonal growth cycle of trees: growth cessation, bud set, freezing tolerance, and bud burst. Populus tremula x Populus tremuloides (Ptt) LATE ELONGATED HYPOCOTYL1 (PttLHY1), PttLHY2, and TIMING OF CAB EXPRESSION1 constitute regulatory clock components because down-regulation by RNA interference of these genes leads to altered phase and period of clock-controlled gene expression as compared to the wild type. Also, both RNA interference lines show about 1-h-shorter critical daylength for growth cessation as compared to the wild type, extending their period of growth. During winter dormancy, when the diurnal variation in clock gene expression stops altogether, down-regulation of PttLHY1 and PttLHY2 expression compromises freezing tolerance and the expression of C-REPEAT BINDING FACTOR1, suggesting a role of these genes in cold hardiness. Moreover, down-regulation of PttLHY1 and PttLHY2 causes a delay in bud burst. This evidence shows that in addition to a role in daylength-controlled processes, PttLHY plays a role in the temperature-dependent processes of dormancy in Populus such as cold hardiness and bud burst.
  •  
4.
  • Ibañez, Cristian, et al. (författare)
  • Overall alteration of circadian clock gene expression in the chestnut cold response
  • 2008
  • Ingår i: PLOS ONE. - : Public library of science. - 1932-6203. ; 3:10, s. e3567-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold acclimation in woody plants may have special features compared to similar processes in herbaceous plants. Recent studies have shown that circadian clock behavior in the chestnut tree (Castanea sativa) is disrupted by cold temperatures and that the primary oscillator feedback loop is not functional at 4 degrees C or in winter. In these conditions, CsTOC1 and CsLHY genes are constantly expressed. Here, we show that this alteration also affects CsPRR5, CsPRR7 and CsPRR9. These genes are homologous to the corresponding Arabidopsis PSEUDO-RESPONSE REGULATOR genes, which are also components of the circadian oscillator feedback network. The practically constant presence of mRNAs of the 5 chestnut genes at low temperature reveals an unknown aspect of clock regulation and suggests a mechanism regulating the transcription of oscillator genes as a whole.
  •  
5.
  • Johansson, Mikael, et al. (författare)
  • Monitoring seasonal bud set, bud burst, and cold hardiness in Populus
  • 2014
  • Ingår i: Plant Circadian Networks. - New York : Springer Science+Business Media B.V.. - 9781493906994 - 9781493907007 ; , s. 313-324
  • Bokkapitel (refereegranskat)abstract
    • Using a perennial model plant allows the study of reoccurring seasonal events in a way that is not possible using a fast-growing annual such as Arabidopsis thaliana (Arabidopsis). In this study, we present a hybrid aspen (Populus tremula × P. tremuloides) as our perennial model plant. These plants can be grown in growth chambers to shorten growth periods and manipulate day length and temperature in ways that would be impossible under natural conditions. In addition, the use of growth chambers allows easy monitoring of height and diameter expansion, accelerating the collection of data from new strategies that allow evaluation of promoters or inhibitors of growth. Here, we describe how to study and quantify responses to seasonal changes (mainly using P. tremula × P. tremuloides) by measuring growth rate and key events under different photoperiodic cycles.
  •  
6.
  • Johansson, Mikael, et al. (författare)
  • Monitoring seasonal bud set, bud burst, and cold hardiness in populus
  • 2022
  • Ingår i: Plant circadian networks. - New York, NY : Humana Press. - 9781071619117 - 9781071619124 ; , s. 215-226
  • Bokkapitel (refereegranskat)abstract
    • Using a perennial model plant allows the study of reoccurring seasonal events in a way that is not possible using a fast-growing annual such as A. thaliana (Arabidopsis). In this study, we present a hybrid aspen (Populus tremula × P. tremuloides) as our perennial model plant. These plants can be grown in growth chambers to shorten growth periods and manipulate day length and temperature in ways that would be impossible under natural conditions. In addition, the use of growth chambers allows easy monitoring of height and diameter expansion, accelerating the collection of data from new strategies that allow evaluation of promoters or inhibitors of growth. Here, we describe how to study and quantify responses to seasonal changes (mainly using P. tremula × P. tremuloides) by measuring growth rate and key events under different photoperiodic cycles.
  •  
7.
  • Johansson, Mikael, et al. (författare)
  • The perennial clock is an essential timer for seasonal growth events and cold hardiness
  • 2014
  • Ingår i: Plant Circadian Networks. - New York : Springer. - 9781493907007 ; , s. 297-311
  • Bokkapitel (refereegranskat)abstract
    • Over the last several decades, changes in global temperatures have led to changes in local environments affecting the growth conditions for many species. This is a trend that makes it even more important to understand how plants respond to local variations and seasonal changes in climate. To detect daily and seasonal changes as well as acute stress factors such as cold and drought, plants rely on a circadian clock. This chapter introduces the current knowledge and literature about the setup and function of the circadian clock in various tree and perennial species, with a focus on the Populus genus.
  •  
8.
  • Johansson, Mikael, et al. (författare)
  • The perennial clock is an essential timer for seasonal growth events and cold hardiness
  • 2022
  • Ingår i: Plant circadian networks. - New York, NY : Humana Press. - 9781071619117 - 9781071619124 ; , s. 227-242
  • Bokkapitel (refereegranskat)abstract
    • Over the last several decades, changes in global temperatures have led to changes in local environments affecting the growth conditions for many species. This is a trend that makes it even more important to understand how plants respond to local variations and seasonal changes in climate. To detect daily and seasonal changes as well as acute stress factors such as cold and drought, plants rely on a circadian clock. This chapter introduces the current knowledge and literature about the setup and function of the circadian clock in various tree and perennial species, with a focus on the Populus genus.
  •  
9.
  • Jurca, Manuela, et al. (författare)
  • ZEITLUPE Promotes ABA-Induced Stomatal Closure in Arabidopsis and Populus
  • 2022
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants balance water availability with gas exchange and photosynthesis by controlling stomatal aperture. This control is regulated in part by the circadian clock, but it remains unclear how signalling pathways of daily rhythms are integrated into stress responses. The serine/threonine protein kinase OPEN STOMATA 1 (OST1) contributes to the regulation of stomatal closure via activation of S-type anion channels. OST1 also mediates gene regulation in response to ABA/drought stress. We show that ZEITLUPE (ZTL), a blue light photoreceptor and clock component, also regulates ABA-induced stomatal closure in Arabidopsis thaliana, establishing a link between clock and ABA-signalling pathways. ZTL sustains expression of OST1 and ABA-signalling genes. Stomatal closure in response to ABA is reduced in ztl mutants, which maintain wider stomatal apertures and show higher rates of gas exchange and water loss than wild-type plants. Detached rosette leaf assays revealed a stronger water loss phenotype in ztl-3, ost1-3 double mutants, indicating that ZTL and OST1 contributed synergistically to the control of stomatal aperture. Experimental studies of Populus sp., revealed that ZTL regulated the circadian clock and stomata, indicating ZTL function was similar in these trees and Arabidopsis. PSEUDO-RESPONSE REGULATOR 5 (PRR5), a known target of ZTL, affects ABA-induced responses, including stomatal regulation. Like ZTL, PRR5 interacted physically with OST1 and contributed to the integration of ABA responses with circadian clock signalling. This suggests a novel mechanism whereby the PRR proteins—which are expressed from dawn to dusk—interact with OST1 to mediate ABA-dependent plant responses to reduce water loss in time of stress.
  •  
10.
  • Kozarewa, Iwanka, et al. (författare)
  • Alteration of PHYA expression change circadian rhythms and timing of bud set in Populus
  • 2010
  • Ingår i: Plant Molecular Biology. - : Springer Science and Business Media LLC. - 0167-4412 .- 1573-5028. ; 73:1-2, s. 143-56
  • Tidskriftsartikel (refereegranskat)abstract
    • In many temperate woody species, dormancy is induced by short photoperiods. Earlier studies have shown that the photoreceptor phytochrome A (phyA) promotes growth. Specifically, Populus plants that over-express the oat PHYA gene (oatPHYAox) show daylength-independent growth and do not become dormant. However, we show that oatPHYAox plants could be induced to set bud and become cold hardy by exposure to a shorter, non-24 h diurnal cycle that significantly alters the relative position between endogenous rhythms and perceived light/dark cycles. Furthermore, we describe studies in which the expression of endogenous Populus tremula x P. tremuloides PHYTOCHROME A (PttPHYA) was reduced in Populus trees by antisense inhibition. The antisense plants showed altered photoperiodic requirements, resulting in earlier growth cessation and bud formation in response to daylength shortening, an effect that was explained by an altered innate period that leads to phase changes of clock-associated genes such as PttCO2. Moreover, gene expression studies following far-red light pulses show a phyA-mediated repression of PttLHY1 and an induction of PttFKF1 and PttFT. We conclude that the level of PttPHYA expression strongly influences seasonally regulated growth in Populus and is central to co-ordination between internal clock-regulated rhythms and external light/dark cycles through its dual effect on the pace of clock rhythms and in light signaling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy