SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ibelings Bastiaan W.) "

Sökning: WFRF:(Ibelings Bastiaan W.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thayne, Michael W., et al. (författare)
  • Antecedent lake conditions shape resistance and resilience of a shallow lake ecosystem following extreme wind storms
  • 2022
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 67:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme wind storms can strongly influence short-term variation in lake ecosystem functioning. Climate change is affecting storms by altering their frequency, duration, and intensity, which may have consequences for lake ecosystem resistance and resilience. However, catchment and lake processes are simultaneously affecting antecedent lake conditions which may shape the resistance and resilience landscape prior to storm exposure. To determine whether storm characteristics or antecedent lake conditions are more important for explaining variation in lake ecosystem resistance and resilience, we analyzed the effects of 25 extreme wind storms on various biological and physiochemical variables in a shallow lake. Using boosted regression trees to model observed variation in resistance and resilience, we found that antecedent lake conditions were more important (relative importance = 67%) than storm characteristics (relative importance = 33%) in explaining variation in lake ecosystem resistance and resilience. The most important antecedent lake conditions were turbidity, Schmidt stability, %O2 saturation, light conditions, and soluble reactive silica concentrations. We found that storm characteristics were all similar in their relative importance and results suggest that resistance and resilience decrease with increasing duration, mean precipitation, shear stress intensity, and time between storms. In addition, we found that antagonistic or opposing effects between the biological and physiochemical variables influence the overall resistance and resilience of the lake ecosystem under specific lake and storm conditions. The extent to which these results apply to the resistance and resilience of different lake ecosystems remains an important area for inquiry.
  •  
2.
  • Thayne, Michael W., et al. (författare)
  • Lake surface water temperature and oxygen saturation resistance and resilience following extreme storms : Chlorophyll a shapes resistance toward storms
  • 2023
  • Ingår i: Inland Waters. - : Taylor & Francis Group. - 2044-2041 .- 2044-205X. ; , s. 1-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme storms are becoming more frequent and intense with climate change. Assessing lake ecosystem responses to extreme storms (resistance) and their capacity to recover (resilience) is critical for predicting the future of lake ecosystems in a stormier world. Here we provide a systematic, standardized and quantitative approach for identifying critical processes shaping lake ecosystem resistance following extreme storms. We identified 576 extreme wind storms for eight lakes in Europe and North America. We calculated the resistance and resilience of each lake’s surface water temperature and oxygen saturation following each storm. Sharp decreases and increases in epilimnetic temperature and oxygen saturation caused by extreme storms resulted in unpredictable changes in lake resilience values across lakes, with a tendency not to return to pre-storm conditions. Resistance was primarily shaped by mean annual chlorophyll a concentration and its overall relationship with other physiochemical lake and storm characteristics. We modeled variation in resistance as a function of both lake and storm conditions, and the results suggested that eutrophic lakes were consistently less resistant to extreme storms when compared to oligotrophic lakes. The lakes tended to be most resistant towards extreme storms when antecedent surface waters were warm and oxygen saturated, but overall resistance was highest in lakes with low concentrations of mean annual chlorophyll a and total phosphorus. Our findings suggest physiochemical responses of lakes to meteorological forcing is shaped by ecological and/or physical feedbacks and processes that determine trophic state, such as the influence of differences in nutrient availability and algal growth.
  •  
3.
  • Donis, Daphne, et al. (författare)
  • Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer
  • 2021
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:12, s. 4314-4333
  • Tidskriftsartikel (refereegranskat)abstract
    • To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L-1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4 degrees C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature.
  •  
4.
  • Mantzouki, Evanthia, et al. (författare)
  • A European Multi Lake Survey dataset of environmental variables , phytoplankton pigments and cyanotoxins
  • 2018
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 5:October, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment.
  •  
5.
  •  
6.
  • Mesman, Jorrit P., 1993- (författare)
  • Assessing future effects on lake ecosystem resilience using data analysis and dynamic modelling : Modelling the effects of extreme weather events and climate warming on lakes
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Extreme weather events can have short-term and long-term effects on lake thermal structure, nutrient dynamics, and community composition. Moreover, changes in lake variables induced by global climate change may influence the response and recovery of lake ecosystems to extreme weather events. The linkage between extreme weather and lakes includes interactions between physics and biology, and long-term and short-term dynamics, which are not yet well understood. Process-based modelling is used in this thesis to further explore this topic, and to assess how lake responses to extreme weather events may change under the influence of climate warming.Lake-internal feedback mechanisms were shown to potentially cause sudden shifts in climate-induced transitions in lake mixing regimes, with a role for extreme weather events to induce such shifts. Additionally, one-dimensional physical lake models performed well in reproducing trends in lake variables during storms and heatwaves in a study covering multiple locations and models. However, extreme weather events still presented periods of increased model uncertainty, which should be taken into account. A software package was developed to promote the use of ensemble lake modelling, which is one way to include uncertainty in model forecasting efforts. This could be particularly helpful in periods of extreme weather. With tools and theory now in place, a coupled physical-biogeochemical model was then used to assess what are the most important drivers of how lake phytoplankton responds to storms, and how this response might change with climate warming. Storm intensity, thermal structure, nutrients, and light all affected the phytoplankton concentration after storms. Moderate wind speeds had increasing effects compared to high wind speeds, but a sufficiently deep mixed layer reduced the response to wind strongly. Higher nutrients and light promoted increasing effects of wind, and higher temperatures promoted decreasing effects. The response of phytoplankton to storms did not change markedly between present-day and future-climate scenarios.This thesis furthers our understanding of the processes involved in extreme events acting on lakes. A more complete understanding is necessary to develop more reliable models and anticipate future conditions. Furthermore, modelling was shown to be a viable approach to study these events and validation data and tools were provided to increase the reliability of this method. In these times of increasing environmental pressures and changing extreme weather patterns, more insight into future effects of extreme events is much needed.
  •  
7.
  • Reinl, Kaitlin L., et al. (författare)
  • Blooms also like it cold
  • 2023
  • Ingår i: Limnology and Oceanography Letters. - : John Wiley & Sons. - 2378-2242. ; 8:4, s. 546-564
  • Forskningsöversikt (refereegranskat)abstract
    • Cyanobacterial blooms have substantial direct and indirect negative impacts on freshwater ecosystems including releasing toxins, blocking light needed by other organisms, and depleting oxygen. There is growing concern over the potential for climate change to promote cyanobacterial blooms, as the positive effects of increasing lake surface temperature on cyanobacterial growth are well documented in the literature; however, there is increasing evidence that cyanobacterial blooms are also being initiated and persisting in relatively cold-water temperatures (< 15 °C), including ice-covered conditions. In this work, we provide evidence of freshwater cold-water cyanobacterial blooms, review abiotic drivers and physiological adaptations leading to these blooms, offer a typology of these lesser-studied cold-water cyanobacterial blooms, and discuss their occurrence under changing climate conditions.
  •  
8.
  • Stelzer, Julio A. A., et al. (författare)
  • Phytoplankton responses to repeated pulse perturbations imposed on a trend of increasing eutrophication
  • 2022
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • While eutrophication remains one of the main pressures acting on freshwater ecosystems, the prevalence of anthropogenic and nature-induced stochastic pulse perturbations is predicted to increase due to climate change. Despite all our knowledge on the effects of eutrophication and stochastic events operating in isolation, we know little about how eutrophication may affect the response and recovery of aquatic ecosystems to pulse perturbations. There are multiple ways in which eutrophication and pulse perturbations may interact to induce potentially synergic changes in the system, for instance, by increasing the amount of nutrients released after a pulse perturbation. Here, we performed a controlled press and pulse perturbation experiment using mesocosms filled with natural lake water to address how eutrophication modulates the phytoplankton response to sequential mortality pulse perturbations; and what is the combined effect of press and pulse perturbations on the resistance and resilience of the phytoplankton community. Our experiment showed that eutrophication increased the absolute scale of the chlorophyll-a response to pulse perturbations but did not change the proportion of the response relative to its pre-event condition (resistance). Moreover, the capacity of the community to recover from pulse perturbations was significantly affected by the cumulative effect of sequential pulse perturbations but not by eutrophication itself. By the end of the experiment, some mesocosms could not recover from pulse perturbations, irrespective of the trophic state induced by the press perturbation. While not resisting or recovering any less from pulse perturbations, phytoplankton communities from eutrophying systems showed chlorophyll-a levels much higher than non-eutrophying ones. This implies that the higher absolute response to stochastic pulse perturbations in a eutrophying system may increase the already significant risks for water quality (e.g., algal blooms in drinking water supplies), even if the relative scale of the response to pulse perturbations between eutrophying and non-eutrophying systems remains the same.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy