SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ideböhn Veronica 1992) "

Sökning: WFRF:(Ideböhn Veronica 1992)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ideböhn, Veronica, 1992, et al. (författare)
  • Single photon double and triple ionization of allene
  • 2022
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 24:2, s. 786-796
  • Tidskriftsartikel (refereegranskat)abstract
    • Double and triple ionization of allene are investigated using electron-electron, ion-ion, electron-electron-ion and electron-electron-ion-ion (ee, ii, eei, eeii) coincidence spectroscopies at selected photon energies. The results provide supporting evidence for a previously proposed roaming mechanism in H-3(+) formation by double ionization. The lowest vertical double ionization energy is found to be 27.9 eV, while adiabatic double ionization is not accessed by vertical ionization at the neutral geometry. The triple ionization energy is found to be close to 50 eV in agreement with theoretical predictions. The doubly charged parent ion is stable up to about 2 eV above the threshold, after which dissociations by charge separation and by double charge retention occur with comparable intensities. Fragmentation to H+ + C3H3+ starts immediately above the threshold as a slow (metastable) decay with 130.5 +/- 9.9 ns mean lifetime.
  •  
2.
  • Ideböhn, Veronica, 1992, et al. (författare)
  • Symmetry breaking in core-valence double ionisation of allene
  • 2023
  • Ingår i: Communications Chemistry. - : Springer Nature. - 2399-3669. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Allene serves as a model to study multiple ionization of organic molecules. Here, the authors use synchrotron radiation-based multi-particle coincidence techniques and high-level ab initio calculations to propose a simple physical model to elucidate the symmetry breaking in core-valence double ionization of allene. Conventional electron spectroscopy is an established one-electron-at-the-time method for revealing the electronic structure and dynamics of either valence or inner shell ionized systems. By combining an electron-electron coincidence technique with the use of soft X-radiation we have measured a double ionisation spectrum of the allene molecule in which one electron is removed from a C1s core orbital and one from a valence orbital, well beyond Siegbahns Electron-Spectroscopy-for-Chemical-Analysis method. This core-valence double ionisation spectrum shows the effect of symmetry breaking in an extraordinary way, when the core electron is ejected from one of the two outer carbon atoms. To explain the spectrum we present a new theoretical approach combining the benefits of a full self-consistent field approach with those of perturbation methods and multi-configurational techniques, thus establishing a powerful tool to reveal molecular orbital symmetry breaking on such an organic molecule, going beyond Lowdins standard definition of electron correlation.
  •  
3.
  • Jarraya, M., et al. (författare)
  • Doubly ionized OCS bond rearrangement upon fragmentation - experiment and theory
  • 2023
  • Ingår i: Physical Chemistry Chemical Physics. - 1463-9076. ; 25:29, s. 19435-19445
  • Tidskriftsartikel (refereegranskat)abstract
    • The dissociation of OCS2+ ions formed by photoionization of the neutral molecule at 40.81 eV is examined using threefold and fourfold electron-ion coincidence spectroscopy combined with high level quantum chemical calculations on isomeric structures and their potential energy surfaces. The dominant dissociation channel of [OCS](2+) is charge separation forming CO+ + S+ ion pairs, found here to be formed with low intensity at a lower-energy onset and with a correspondingly smaller kinetic energy release than in the more intense higher energy channel previously reported. We explain the formation of CO+ + S+ ion pairs at low as well as higher ionization energies by the existence of two predissociation channels, one involving a newly identified COS2+ metastable state. We conclude that the dominant CO+ + S+ channel with 5.2 eV kinetic energy release is reached upon OCS2+ & RARR; COS2+ isomerization, whereas the smaller kinetic energy release (of & SIM;4 eV) results from the direct fragmentation of OCS2+ (X-3 & sigma;(-)) ions. Dissociation of the COS2+ isomer also explains the existence of the minor C+ + SO+ ion pair channel. We suggest that isomerization prior to dissociation may be a widespread mechanism in dications and more generally in multiply charged ion dissociations.
  •  
4.
  • Olsson, Emelie, 1993, et al. (författare)
  • An experimental and theoretical characterization of the electronic structure of doubly ionised disulfur
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Using time-of-flight multiple electron and ion coincidence techniques in combination with a helium gas discharge lamp and synchrotron radiation, the double ionisation spectrum of disulfur (S-2) and the subsequent fragmentation dynamics of its dication are investigated. The S-2 sample was produced by heating mercury sulfide (HgS), whose vapour at a suitably chosen temperature consists primarily of two constituents: S-2 and atomic Hg. A multi-particle-coincidence technique is thus particularly useful for retrieving spectra of S-2 from ionisation of the mixed vapour. The results obtained are compared with detailed calculations of the electronic structure and potential energy curves of S-2(2+) which are also presented. These computations are carried out using configuration interaction methodology. The experimental results are interpreted with and strongly supported by the computational results.
  •  
5.
  • Wallner, Måns, 1992, et al. (författare)
  • Abiotic molecular oxygen production—Ionic pathway from sulfur dioxide
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:33
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular oxygen, O2, is vital to life on Earth and possibly also on exoplanets. Although the biogenic processes leading to its accumulation in Earth’s atmosphere are well understood, its abiotic origin is still not fully established. Here, we report combined experimental and theoretical evidence for electronic state–selective production of O2 from SO2, a chemical constituent of many planetary atmospheres and one that played an important part on Earth in the Great Oxidation Event. The O2 production involves dissociative double ionization of SO2 leading to efficient formation of the O+2 O 2 + ion, which can be converted to abiotic O2 by electron neutralization or by charge exchange. This formation process may contribute substantially to the abundance of O2 and related ions in planetary atmospheres, such as the Jovian moons Io, Europa, and Ganymede. We suggest that this sort of ionic pathway for the formation of abiotic O2 involving multiply charged molecular ion decomposition may also exist for other atmospheric and planetary molecules.
  •  
6.
  • Kristiansson, Moa K., et al. (författare)
  • Experimental and theoretical studies of excited states in Ir
  • 2021
  • Ingår i: Physical Review A. - : American Physical Society. - 2469-9926 .- 2469-9934. ; 103:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The properties of atomic negative ions are to a large extent determined by electron-electron correlation which makes them an ideal testing ground for atomic many-body physics. In this paper, we present a detailed experimental and theoretical study of excited states in the negative ion of iridium. The ions were stored at cryogenic temperatures using the double electrostatic ion ring experiment facility at Stockholm University. Laser photodetachment was used to monitor the relaxation of three bound excited states belonging to the [Xe] 4f(14)5d(8)6s(2) ionic ground configuration. Our measurements show that the first excited state has a lifetime much longer than the ion-beam storage time of 1230 +/- 100 s. The binding energy of this state was measured to be 1.045 +/- 0.002 eV. The lifetimes of the second and third excited states were experimentally determined to be 133 +/- 10 and 172 +/- 35 ms, respectively. Multiconfiguration Dirac-Hartree-Fock calculations were performed in order to extract binding energies and lifetimes. These calculations predict the existence of the third excited bound state that was detected experimentally. The computed lifetimes for the three excited bound states agree well with the experimental results and allow for a clear identification of the detected levels.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy