SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Idorn Manja) "

Sökning: WFRF:(Idorn Manja)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Donia, Marco, et al. (författare)
  • Acquired immune resistance follows complete tumor regression without loss of target antigens or IFNγ signaling
  • 2017
  • Ingår i: Cancer Research. - 0008-5472. ; 77:17, s. 4562-4566
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer immunotherapy can result in durable tumor regressions in some patients. However, patients who initially respond often experience tumor progression. Here, we report mechanistic evidence of tumoral immune escape in an exemplary clinical case: a patient with metastatic melanoma who developed disease recurrence following an initial, unequivocal radiologic complete regression after T-cell–based immunotherapy. Functional cytotoxic T-cell responses, including responses to one mutant neoantigen, were amplified effectively with therapy and generated durable immunologic memory. However, these immune responses, including apparently effective surveillance of the tumor mutanome, did not prevent recurrence. Alterations of the MHC class I antigen-processing and presentation machinery (APM) in resistant cancer cells, but not antigen loss or impaired IFNγ signaling, led to impaired recognition by tumor-specific CD8þ T cells. Our results suggest that future immunotherapy combinations should take into account targeting cancer cells with intact and impaired MHC class I–related APM. Loss of target antigens or impaired IFNγ signaling does not appear to be mandatory for tumor relapse after a complete radiologic regression. Personalized studies to uncover mechanisms leading to disease recurrence within each individual patient are warranted.
  •  
2.
  • Hennings, Viktoria, et al. (författare)
  • The presence of serum anti-SARS-CoV-2 IgA appears to protect primary health care workers from COVID-19.
  • 2022
  • Ingår i: European journal of immunology. - : Wiley. - 1521-4141 .- 0014-2980. ; 52:5, s. 800-809
  • Tidskriftsartikel (refereegranskat)abstract
    • The patterns of humoral and cellular responses to SARS-CoV-2 were studied in Swedish primary health care workers (n = 156) for 6 months during the Covid-19 pandemic. Serum IgA and IgG to SARS-CoV-2, T-cell proliferation and cytokine secretion, demographic and clinical data, PCR-verified infection, and self-reported symptoms were monitored. The multivariate method OPLS-DA was used to identify immune response patterns coupled to protection from Covid-19. Contracting Covid-19 was associated with SARS-CoV-2-specific neutralizing serum IgG, T cell, IFN-γ, and granzyme B responses to SARS-CoV-2, self-reported typical Covid-19 symptoms, male sex, higher BMI, and hypertension. Not contracting Covid-19 was associated with female sex, IgA-dominated, or no antibody responses to SARS-CoV-2, airborne allergy, and smoking. The IgG-responders had SARS-CoV-2-specific T-cell responses including a cytotoxic CD4+ T-cell population expressing CD25, CD38, CD69, CD194, CD279, CTLA-4, and granzyme B. IgA-responders with no IgG response to SARS-CoV-2 constituted 10% of the study population. The IgA responses were partially neutralizing and only seen in individuals who did not succumb to Covid-19. To conclude, serum IgG-dominated responses correlated with T-cell responses to SARS-CoV-2 and PCR-confirmed Covid-19, whereas IgA-dominated responses correlated with not contracting the infection.
  •  
3.
  • Rafaeva, Maria, et al. (författare)
  • Modeling Metastatic Colonization in a Decellularized Organ Scaffold-Based Perfusion Bioreactor
  • 2022
  • Ingår i: Advanced healthcare materials. - : Wiley. - 2192-2640 .- 2192-2659. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Metastatic cancer spread is responsible for most cancer-related deaths. To colonize a new organ, invading cells adapt to, and remodel, the local extracellular matrix (ECM), a network of proteins and proteoglycans underpinning all tissues, and a critical regulator of homeostasis and disease. However, there is a major lack in tools to study cancer cell behavior within native 3D ECM. Here, an in-house designed bioreactor, where mouse organ ECM scaffolds are perfused and populated with cells that are challenged to colonize it, is presented. Using a specialized bioreactor chamber, it is possible to monitor cell behavior microscopically (e.g., proliferation, migration) within the organ scaffold. Cancer cells in this system recapitulate cell signaling observed in vivo and remodel complex native ECM. Moreover, the bioreactors are compatible with co-culturing cell types of different genetic origin comprising the normal and tumor microenvironment. This degree of experimental flexibility in an organ-specific and 3D context, opens new possibilities to study cell–cell and cell–ECM interplay and to model diseases in a controllable organ-specific system ex vivo.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy