SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Iijima T.) "

Sökning: WFRF:(Iijima T.)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sugita, S., et al. (författare)
  • The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes
  • 2019
  • Ingår i: Science. - : AAAS. - 0036-8075 .- 1095-9203. ; 364:6437
  • Tidskriftsartikel (refereegranskat)abstract
    • Asteroids fall to Earth in the form of meteorites, but these provide little information about their origins. The Japanese mission Hayabusa2 is designed to collect samples directly from the surface of an asteroid and return them to Earth for laboratory analysis. Three papers in this issue describe the Hayabusa2 team's study of the near-Earth carbonaceous asteroid 162173 Ryugu, at which the spacecraft arrived in June 2018 (see the Perspective by Wurm). Watanabeet al.measured the asteroid's mass, shape, and density, showing that it is a “rubble pile” of loose rocks, formed into a spinning-top shape during a prior period of rapid spin. They also identified suitable landing sites for sample collection. Kitazatoet al.used near-infrared spectroscopy to find ubiquitous hydrated minerals on the surface and compared Ryugu with known types of carbonaceous meteorite. Sugitaet al.describe Ryugu's geological features and surface colors and combined results from all three papers to constrain the asteroid's formation process. Ryugu probably formed by reaccumulation of rubble ejected by impact from a larger asteroid. These results provide necessary context to understand the samples collected by Hayabusa2, which are expected to arrive on Earth in December 2020.Science, this issue p.268, p.272, p.eaaw0422; see also p.230
  •  
2.
  • Sakatani, N., et al. (författare)
  • Anomalously porous boulders on (162173) Ryugu as primordial materials from its parent body
  • 2021
  • Ingår i: Nature Astronomy. - : Springer Nature. - 2397-3366. ; 5:8, s. 766-774
  • Tidskriftsartikel (refereegranskat)abstract
    • Planetesimals—the initial stage of the planetary formation process—are considered to be initially very porous aggregates of dusts1,2, and subsequent thermal and compaction processes reduce their porosity3. The Hayabusa2 spacecraft found that boulders on the surface of asteroid (162173) Ryugu have an average porosity of 30–50% (refs. 4,5,6), higher than meteorites but lower than cometary nuclei7, which are considered to be remnants of the original planetesimals8. Here, using high-resolution thermal and optical imaging of Ryugu’s surface, we discovered, on the floor of fresh small craters (<20 m in diameter), boulders with reflectance (~0.015) lower than the Ryugu average6 and porosity >70%, which is as high as in cometary bodies. The artificial crater formed by Hayabusa2’s impact experiment9 is similar to these craters in size but does not have such high-porosity boulders. Thus, we argue that the observed high porosity is intrinsic and not created by subsequent impact comminution and/or cracking. We propose that these boulders are the least processed material on Ryugu and represent remnants of porous planetesimals that did not undergo a high degree of heating and compaction3. Our multi-instrumental analysis suggests that fragments of the highly porous boulders are mixed within the surface regolith globally, implying that they might be captured within collected samples by touch-down operations10,11.
  •  
3.
  •  
4.
  • Pastorello, A., et al. (författare)
  • A giant outburst two years before the core-collapse of a massive star
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 829-832
  • Tidskriftsartikel (refereegranskat)abstract
    • The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars(1,2). The detection of several precursor stars of type II supernovae has been reported ( see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient(4) that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf - Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60 - 100 solar masses(5), but the progenitor of SN 2006jc was helium- and hydrogen-deficient ( unlike LBVs). An LBV-like outburst of a Wolf - Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf - Rayet star exploding as SN 2006jc, could explain the observations.
  •  
5.
  •  
6.
  • Dall'Ora, M., et al. (författare)
  • THE TYPE IIP SUPERNOVA 2012aw IN M95 : HYDRODYNAMICAL MODELING OF THE PHOTOSPHERIC PHASE FROM ACCURATE SPECTROPHOTOMETRIC MONITORING
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 787:2, s. 139-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an extensive optical and near-infrared photometric and spectroscopic campaign of the Type IIP supernova SN 2012aw. The data set densely covers the evolution of SN 2012aw shortly after the explosion through the end of the photospheric phase, with two additional photometric observations collected during the nebular phase, to fit the radioactive tail and estimate the Ni-56 mass. Also included in our analysis is the previously published Swift UV data, therefore providing a complete view of the ultraviolet-optical-infrared evolution of the photospheric phase. On the basis of our data set, we estimate all the relevant physical parameters of SN 2012aw with our radiation-hydrodynamics code: envelope mass M-env similar to 20 M-circle dot, progenitor radius R similar to 3 x 10(13) cm (similar to 430 R-circle dot), explosion energy E similar to 1.5 foe, and initial Ni-56 mass similar to 0.06 M-circle dot. These mass and radius values are reasonably well supported by independent evolutionary models of the progenitor, and may suggest a progenitor mass higher than the observational limit of 16.5 +/- 1.5 M-circle dot of the Type IIP events.
  •  
7.
  •  
8.
  • Ohtani, S, et al. (författare)
  • Simultaneous prenoon and postnoon observations of 3 field-aligned current systems from Viking and DMSP F7
  • 1995
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 100:A1, s. 119-136
  • Tidskriftsartikel (refereegranskat)abstract
    • The spatial structure of dayside large-scale field-aligned current (FAG) systems is examined by using Viking and DMSP-F7 data. We focus on four events in which the satellites simultaneously observed postnoon and prenoon three FAC systems: the region 2, the region 1, and the mantle (referred to as midday region 0) systems, from equatorward to poleward. These events provide the most solid evidence to date that the midday region 0 system is a separate and unique FAC system, and is not an extension of the region 1 system from other local times. The events are examined comprehensively by making use of a multi-instrument data set, which includes magnetic field, particle flux, electric field, auroral UV image data from the satellites, and the Sondrestrom convection data. The results are summarized as follows: (1) Region 2 currents flow mostly in the CPS precipitation region, often overlapping with the BPS at their poleward edge. (2) The region 1 system is located in the core part of the auroral oval and is confined in a relatively narrow range in latitude which includes the convection reversal. The low-latitude boundary layer, possibly including the outer part of the plasma sheet, and the external cusp are the major source regions of dayside region 1 currents. (3) Midday region 0 currents flow on open field lines and are collocated with the shear of antisunward convection flows with velocities decreasing poleward. On the basis of these results we support the view that both prenoon and postnoon current systems consist of the three-sheet structure when the distortion of the convection pattern associated with interplanetary magnetic field (IMF) B-y is small and both morningside and eveningside convection cells are crescent-shaped. We also propose that the midday region 0 and a part of the region 1 systems are closely coupled to the same source.
  •  
9.
  • Quintero Noda, C., et al. (författare)
  • Chromospheric polarimetry through multiline observations of the 850nm spectral region III : Chromospheric jets driven by twisted magnetic fields
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 486:3, s. 4203-4215
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the diagnostic potential of the spectral lines at 850 nm for understanding the magnetism of the lower atmosphere. For that purpose, we use a newly developed 3D simulation of a chromospheric jet to check the sensitivity of the spectral lines to this phenomenon as well as our ability to infer the atmospheric information through spectropolarimetric inversions of noisy synthetic data. We start comparing the benefits of inverting the entire spectrum at 850 nm versus only the Ca II 8542 angstrom spectral line. We found a better match of the input atmosphere for the former case, mainly at lower heights. However, the results at higher layers were not accurate. After several tests, we determined that we need to weight more the chromospheric lines than the photospheric ones in the computation of the goodness of the fit. The new inversion configuration allows us to obtain better fits and consequently more accurate physical parameters. Therefore, to extract the most from multiline inversions, a proper set of weights needs to be estimated. Besides that, we conclude again that the lines at 850 nm, or a similar arrangement with Ca II 8542 angstrom plus Zeeman-sensitive photospheric lines, pose the best-observing configuration for examining the thermal and magnetic properties of the lower solar atmosphere.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy