SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Iisa Kristiina) "

Sökning: WFRF:(Iisa Kristiina)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carlsson, Per, et al. (författare)
  • Computational fluid dynamics simulations of raw gas composition from a black liquor gasifier : comparison with experiments
  • 2011
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 25:9, s. 4122-4128
  • Tidskriftsartikel (refereegranskat)abstract
    • Pressurized entrained flow high temperature black liquor gasification can be used as a complement or a substitute to the Tomlinson boiler used in the chemical recovery process at kraft pulp mills. The technology has been proven on the development scale, but there are still no full scale plants. This work is intended to aid in the development by providing computational tools that can be used in scale up of the existing technology. In this work, an existing computational fluid dynamics (CFD) model describing the gasification reactor is refined. First, one-dimensional (1D) plug flow reactor calculations with a comprehensive reaction mechanism are performed to judge the validity of the global homogeneous reaction mechanism used in the CFD simulations in the temperature range considered. On the basis of the results from the comparison, an extinction temperature modification of the steam-methane reforming reaction was introduced in the CFD model. An extinction temperature of 1400 K was determined to give the best overall agreement between the two models. Next, the results from simulations of the flow in a 3 MW pilot gasifier with the updated CFD model are compared to experimental results in which pressure, oxygen to black liquor equivalence ratio, and residence time have been varied. The results show that the updated CFD model can predict the main gas components (H2, CO, CO2) within an absolute error of 2.5 mol %. CH4 can be predicted within an absolute error of 1 mol %, and most of the trends when process conditions are varied are captured by the model.
  •  
2.
  • Carlsson, Per, et al. (författare)
  • High-speed imaging of biomass particles heated with a laser
  • 2013
  • Ingår i: Journal of Analytical and Applied Pyrolysis. - : Elsevier BV. - 0165-2370 .- 1873-250X. ; 103, s. 278-286
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work two types of lignocellulosic biomass particles, European spruce and American hardwood (particle sizes from 100 μm to 500 μm) were pyrolysed with a continuous wave 2 W Nd:YAG laser. Simultaneously a high-speed camera was used to capture the behavior of the biomass particle as it was heated for about 0.1 s. Cover glasses were used as a sample holder which allowed for light microscope studies after the heating. Since the cover glasses are not initially heated by the laser, vapors from the biomass particle are quenched on the glass within about 1 particle diameter from the initial particle. Image processing was used to track the contour of the biomass particle and the enclosed area of the contour was calculated for each frame.The main observations are: There is a significant difference between how much surface energy is needed to pyrolyses the spruce (about 75% more) compared to the hardwood. The oil-like substance which appeared on the glass during the experiment is solid at room temperature and shows different levels of transparency. A fraction of this substance is water soluble. A brownish coat is seen on the unreacted biomass. The biomass showed insignificant swelling as it was heated. The biomass particle appears to melt and boil at the front that is formed between the laser beam and the biomass particle. The part of the particle that is not subjected to the laser beam seems to be unaffected.
  •  
3.
  • Iisa, Kristiina, et al. (författare)
  • Chemical and physical characterization of aerosols from fast pyrolysis of biomass
  • 2019
  • Ingår i: Journal of Analytical and Applied Pyrolysis. - : Elsevier B.V.. - 0165-2370 .- 1873-250X. ; 142
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass fast pyrolysis vapors contain a significant quantity of persistent aerosols, which can impact downstream processing by e.g. fouling of surfaces and deposition on downstream catalysts. In this study, aerosol concentrations and size distributions were measured by an impactor in two pyrolysis systems, a bench-scale fluidized-bed pyrolyzer and a pilot-scale cyclone pyrolyzer. In both units, the mass-based mode aerosol diameter was approximately 1 μm before aerosol collection devices in cooled vapors of 300–370 K but the number-based median was < 0.1 μm. Aerosols < 1 μm were formed and aerosols > 1 μm deposited during cooling of pyrolysis vapors from 620 to 370 K in the fluidized-bed pyrolysis system. The oil fraction collected from the aerosols constituted approximately 40 wt% of the total oils collected in both systems. Compared to the total collected oil, the oil fraction from the aerosols was enriched in lignin-derived components and anhydrosugars and had lower concentrations of low molecular weight cellulose derived oxygenates, such as hydroxyketones. 
  •  
4.
  • Johansson, Ann-Christine, et al. (författare)
  • Fractional condensation of pyrolysis vapors produced from Nordic feedstocks in cyclone pyrolysis
  • 2017
  • Ingår i: Journal of Analytical and Applied Pyrolysis. - : Elsevier BV. - 0165-2370 .- 1873-250X. ; 123, s. 244-254
  • Tidskriftsartikel (refereegranskat)abstract
    • Pyrolysis oil is a complex mixture of different chemical compounds with a wide range of molecular weights and boiling points. Due to its complexity, an efficient fractionation of the oil may be a more promising approach of producing liquid fuels and chemicals than treating the whole oil. In this work a sampling system based on fractional condensation was attached to a cyclone pyrolysis pilot plant to enable separation of the produced pyrolysis vapors into five oil fractions. The sampling system was composed of cyclonic condensers and coalescing filters arranged in series. The objective was to characterize the oil fractions produced from three different Nordic feedstocks and suggest possible applications. The oil fractions were thoroughly characterized using several analytical techniques including water content; elemental composition; heating value, and chemical compound group analysis using solvent fractionation, quantitative 13C NMR and 1H NMR and GC x GC − TOFMS. The results show that the oil fractions significantly differ from each other both in chemical and physical properties. The first fractions and the fraction composed of aerosols were highly viscous and contained larger energy-rich compounds of mainly lignin-derived material. The middle fraction contained medium-size compounds with relatively high concentration of water, sugars, alcohols, hydrocarbonyls and acids and finally the last fraction contained smaller molecules such as water, aldehydes, ketones and acids. However, the properties of the respective fractions seem independent on the studied feedstock types, i.e. the respective fractions produced from different feedstock are rather similar. This promotes the possibility to vary the feedstock depending on availability while retaining the oil properties. Possible applications of the five fractions vary from oil for combustion and extraction of the pyrolytic lignin in the early fractions to extraction of sugars from the early and middle fractions, and extraction of acids and aldehydes in the later fractions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy