SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Iizuka Yoshinori) "

Sökning: WFRF:(Iizuka Yoshinori)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahl-Jensen, D., et al. (författare)
  • Eemian interglacial reconstructed from a Greenland folded ice core
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 493:7433, s. 489-494
  • Tidskriftsartikel (refereegranskat)abstract
    • Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.
  •  
2.
  • Furukawa, Ryoto, et al. (författare)
  • Seasonal-Scale Dating of a Shallow Ice Core From Greenland Using Oxygen Isotope Matching Between Data and Simulation
  • 2017
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-8996. ; 122:20, s. 10-10
  • Tidskriftsartikel (refereegranskat)abstract
    • A precise age scale based on annual layer counting is essential for investigating past environmental changes from ice core records. However, subannual scale dating is hampered by the irregular intraannual variabilities of oxygen isotope (δ18O) records. Here we propose a dating method based on matching the δ18O variations between ice core records and records simulated by isotope-enabled climate models. We applied this method to a new δ18O record from an ice core obtained from a dome site in southeast Greenland. The close similarity between the δ18O records from the ice core and models enables correlation and the production of a precise age scale, with an accuracy of a few months. A missing δ18O minimum in the 1995/1996 winter is an example of an indistinct δ18O seasonal cycle. Our analysis suggests that the missing δ18O minimum is likely caused by a combination of warm air temperature, weak moisture transport, and cool ocean temperature. Based on the age scale, the average accumulation rate from 1960 to 2014 is reconstructed as 1.02 m yr-1 in water equivalent. The annual accumulation rate shows an increasing trend with a slope of 3.6 mm yr-1, which is mainly caused by the increase in the autumn accumulation rate of 2.6 mm yr-1. This increase is likely linked to the enhanced hydrological cycle caused by the decrease in Arctic sea ice area. Unlike the strong seasonality of precipitation amount in the ERA reanalysis data in the southeast dome region, our reconstructed accumulation rate suggests a weak seasonality.
  •  
3.
  • Iizuka, Yoshinori, et al. (författare)
  • Sulphate and chloride aerosols during Holocene and last glacial periods preserved in the Talos Dome Ice Core, a peripheral region of Antarctica
  • 2013
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - Stokcholm : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 65, s. 20197-
  • Tidskriftsartikel (refereegranskat)abstract
    • Antarctic ice cores preserve the record of past aerosols, an important proxy of past atmospheric chemistry. Here we present the aerosol compositions of sulphate and chloride particles in the Talos Dome (TD) ice core from the Holocene and Last Glacial Period. We find that the main salt types of both periods are NaCl, Na2SO4 and CaSO4, indicating that TD ice contains relatively abundant sea salt (NaCl) from marine primary particles. By evaluating the molar ratio of NaCl to Na2SO4, we show that about half of the sea salt does not undergo sulphatisation during late Holocene. Compared to in inland Antarctica, the lower sulphatisation rate at TD is probably due to relatively little contact between sea salt and sulphuric acid. This low contact rate can be related to a reduced time of reaction for marine-sourced aerosol before reaching TD and/or to a reduced post-depositional effect from the higher accumulation rate at TD. Many sulphate and chloride salts are adhered to silicate minerals. The ratio of sulphate-adhered mineral to particle mass and the corresponding ratio of chloride-adhered mineral both increase with increasing dust concentration. Also, the TD ice appears to contain Ca(NO3)(2) or CaCO3 particles, thus differing from aerosol compositions in inland Antarctica, and indicating the proximity of peripheral regions to marine aerosols.
  •  
4.
  • Iizuka, Yoshinori, et al. (författare)
  • The rates of sea salt sulfatization in the atmosphere and surface snow of inland Antarctica
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. D04308-
  • Tidskriftsartikel (refereegranskat)abstract
    • Most of the aerosol particles present in the surface snow and ice of inland Antarctica come from primary sea salt (sodium chloride) and marine biological activity (methansulfonic and sulfuric acids). Melted water from surface snow, firn, and Holocene ice contains mainly sodium, chloride, and sulfate ions. Although it is well known that sea salt aerosols react rapidly with sulfuric acid, a process known as sulfatization, it is not known when this process takes place. In this research we undertake to measure the proportion of sea salt aerosols that undergo sulfatization in the atmosphere and surface snow, as opposed to deeper ice, in order to understand the suitability of sea salt aerosols as a proxy for past climates in deep ice cores. We directly measure the sulfatization rates in recently fallen snow (0-4 m in depth) collected at the Dome Fuji station, using X-ray dispersion spectroscopy to determine the constituent elements of soluble particles and computing the molar ratios of sodium chloride and sodium sulfate. We estimate that about 90% of the initial sea salt aerosols sulfatize as they are taken up by precipitation over Dome Fuji or in the snowpack within one year after being deposited on the ice sheet.
  •  
5.
  • Oyabu, Ikumi, et al. (författare)
  • Chemical compositions of solid particles present in the Greenland NEEM ice core over the last 110,000 years
  • 2015
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 120:18, s. 9789-9813
  • Tidskriftsartikel (refereegranskat)abstract
    • This study reports the chemical composition of particles present along Greenland's North Greenland Eemian Ice Drilling (NEEM) ice core, back to 110,000years before present. Insoluble and soluble particles larger than 0.45 mu m were extracted from the ice core by ice sublimation, and their chemical composition was analyzed using scanning electron microscope and energy dispersive X-ray spectroscopy and micro-Raman spectroscopy. We show that the dominant insoluble components are silicates, whereas NaCl, Na2SO4, CaSO4, and CaCO3 represent major soluble salts. For the first time, particles of CaMg(CO3)(2) and Ca(NO3)(2)center dot 4H(2)O are identified in a Greenland ice core. The chemical speciation of salts varies with past climatic conditions. Whereas the fraction of Na salts (NaCl+Na2SO4) exceeds that of Ca salts (CaSO4+CaCO3) during the Holocene (0.6-11.7kyr B.P.), the two fractions are similar during the BOlling-AllerOd period (12.9-14.6kyr B.P.). During cold climate such as over the Younger Dryas (12.0-12.6kyr B.P.) and the Last Glacial Maximum (15.0-26.9kyr B.P.), the fraction of Ca salts exceeds that of Na salts, showing that the most abundant ion generally controls the salt budget in each period. High-resolution analyses reveal changing particle compositions: those in Holocene ice show seasonal changes, and those in LGM ice show a difference between cloudy bands and clear layers, which again can be largely explained by the availability of ionic components in the atmospheric aerosol body of air masses reaching Greenland.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy