SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ino K.) "

Sökning: WFRF:(Ino K.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Herlemann, D. P. R., et al. (författare)
  • Individual Physiological Adaptations Enable Selected Bacterial Taxa To Prevail during Long-Term Incubations
  • 2019
  • Ingår i: Applied and Environmental Microbiology. - : AMER SOC MICROBIOLOGY. - 0099-2240 .- 1098-5336. ; 85:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Enclosure experiments are frequently used to investigate the impact of changing environmental conditions on microbial assemblages. Yet, how the incubation itself challenges complex bacterial communities is thus far unknown. In this study, metaproteomic profiling, 16S rRNA gene analyses, and cell counts were combined to evaluate bacterial communities derived from marine, mesohaline, and oligohaline conditions after long-term batch incubations. Early in the experiment, the three bacterial communities were highly diverse and differed significantly in their compositions. Manipulation of the enclosures with terrigenous dissolved organic carbon resulted in notable differences compared to the control enclosures at this early phase of the experiment. However, after 55 days, bacterial communities in the manipulated and the control enclosures under marine and mesohaline conditions were all dominated by gammaproteobacterium Spongiibacter. In the oligohaline enclosures, actinobacterial cluster I of the hgc group (hgc-I) remained abundant in the late phase of the incubation. Metaproteome analyses suggested that the ability to use outer membrane-based internal energy stores, in addition to the previously described grazing resistance, may enable the gammaproteobacterium Spongiibacter to prevail in long-time incubations. Under oligohaline conditions, the utilization of external recalcitrant carbon appeared to be more important (hgc-I). Enclosure experiments with complex natural microbial communities are important tools to investigate the effects of manipulations. However, species-specific properties, such as individual carbon storage strategies, can cause manipulation-independent effects and need to be considered when interpreting results from enclosures. IMPORTANCE In microbial ecology, enclosure studies are often used to investigate the effect of single environmental factors on complex bacterial communities. However, in addition to the manipulation, unintended effects ("bottle effect") may occur due to the enclosure itself. In this study, we analyzed the bacterial communities that originated from three different salinities of the Baltic Sea, comparing their compositions and physiological activities both at the early stage and after 55 days of incubation. Our results suggested that internal carbon storage strategies impact the success of certain bacterial species, independent of the experimental manipulation. Thus, while enclosure experiments remain valid tools in environmental research, microbial community composition shifts must be critically followed. This investigation of the metaproteome during long-term batch enclosures expanded our current understanding of the so-called "bottle effect," which is well known to occur during enclosure experiments.
  •  
2.
  • Ramon-Azcon, J., et al. (författare)
  • Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells
  • 2012
  • Ingår i: Lab on a Chip - Miniaturisation for Chemistry and Biology. - : Royal Society of Chemistry (RSC). - 1473-0189 .- 1473-0197. ; 12:16, s. 2959-2969
  • Tidskriftsartikel (refereegranskat)abstract
    • Establishing the 3D microscale organization of cells has numerous practical applications, such as in determining cell fate (e. g., proliferation, migration, differentiation, and apoptosis) and in making functional tissue constructs. One approach to spatially pattern cells is by dielectrophoresis (DEP). DEP has characteristics that are important for cell manipulation, such as high accuracy, speed, scalability, and the ability to handle both adherent and non-adherent cells. However, widespread application of this method is largely restricted because there is a limited number of suitable hydrogels for cell encapsulation. To date, polyethylene glycol-diacrylate (PEG-DA) and agarose have been used extensively for dielectric patterning of cells. In this study, we propose gelatin methacrylate (GelMA) as a promising hydrogel for use in cell dielectropatterning because of its biocompatibility and low viscosity. Compared to PEG hydrogels, GelMA hydrogels showed superior performance when making cell patterns for myoblast (C2C12) and endothelial (HUVEC) cells as well as in maintaining cell viability and growth. We also developed a simple and robust protocol for co-culture of these cells. Combined application of the GelMA hydrogels and the DEP technique is suitable for creating highly complex microscale tissues with important applications in fundamental cell biology and regenerative medicine in a rapid, accurate, and scalable manner.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy