SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Insel P. A.) "

Sökning: WFRF:(Insel P. A.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jack, C. R., et al. (författare)
  • Magnetic resonance imaging in Alzheimer's Disease Neuroimaging Initiative 2
  • 2015
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 11:7, s. 740-756
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Alzheimer's Disease Neuroimaging Initiative (ADNI) is now in its 10th year. The primary objective of the magnetic resonance imaging (MRI) core of ADNI has been to improve methods for clinical trials in Alzheimer's disease (AD) and related disorders. Methods: We review the contributions of the MRI core from present and past cycles of ADNI (ADNI-1, -Grand Opportunity and -2). We also review plans for the future-ADNI-3. Results: Contributions of the MRI core include creating standardized acquisition protocols and quality control methods; examining the effect of technical features of image acquisition and analysis on outcome metrics; deriving sample size estimates for future trials based on those outcomes; and piloting the potential utility of MR perfusion, diffusion, and functional connectivity measures in multicenter clinical trials. Discussion: Over the past decade the MRI core of ADNI has fulfilled its mandate of improving methods for clinical trials in AD and will continue to do so in the future. (C) 2015 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer's Association.
  •  
2.
  • Klepac, K., et al. (författare)
  • The G(q) signalling pathway inhibits brown and beige adipose tissue
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Brown adipose tissue (BAT) dissipates nutritional energy as heat via the uncoupling protein-1 (UCP1) and BAT activity correlates with leanness in human adults. Here we profile G protein-coupled receptors (GPCRs) in brown adipocytes to identify druggable regulators of BAT. Twenty-one per cent of the GPCRs link to the G(q) family, and inhibition of G(q) signalling enhances differentiation of human and murine brown adipocytes. In contrast, activation of G(q) signalling abrogates brown adipogenesis. We further identify the endothelin/Ednra pathway as an autocrine activator of G(q) signalling in brown adipocytes. Expression of a constitutively active G(q) protein in mice reduces UCP1 expression in BAT, whole-body energy expenditure and the number of brown-like/beige cells in white adipose tissue (WAT). Furthermore, expression of G(q) in human WAT inversely correlates with UCP1 expression. Thus, our data indicate that G(q) signalling regulates brown/beige adipocytes and inhibition of G(q) signalling may be a novel therapeutic approach to combat obesity.
  •  
3.
  • Insel, Richard A, et al. (författare)
  • Staging Presymptomatic Type 1 Diabetes: A Scientific Statement of JDRF, the Endocrine Society, and the American Diabetes Association.
  • 2015
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 38:10, s. 1964-1974
  • Tidskriftsartikel (refereegranskat)abstract
    • Insights from prospective, longitudinal studies of individuals at risk for developing type 1 diabetes have demonstrated that the disease is a continuum that progresses sequentially at variable but predictable rates through distinct identifiable stages prior to the onset of symptoms. Stage 1 is defined as the presence of β-cell autoimmunity as evidenced by the presence of two or more islet autoantibodies with normoglycemia and is presymptomatic, stage 2 as the presence of β-cell autoimmunity with dysglycemia and is presymptomatic, and stage 3 as onset of symptomatic disease. Adoption of this staging classification provides a standardized taxonomy for type 1 diabetes and will aid the development of therapies and the design of clinical trials to prevent symptomatic disease, promote precision medicine, and provide a framework for an optimized benefit/risk ratio that will impact regulatory approval, reimbursement, and adoption of interventions in the early stages of type 1 diabetes to prevent symptomatic disease.
  •  
4.
  • Skyler, Jay S, et al. (författare)
  • Differentiation of diabetes by pathophysiology, natural history, and prognosis
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:2, s. 241-255
  • Forskningsöversikt (refereegranskat)abstract
    • The American Diabetes Association, JDRF, the European Association for the Study of Diabetes, and the American Association of Clinical Endocrinologists convened a research symposium, "The Differentiation of Diabetes by Pathophysiology, Natural History and Prognosis" on 10-12 October 2015. International experts in genetics, immunology, metabolism, endocrinology, and systems biology discussed genetic and environmental determinants of type 1 and type 2 diabetes risk and progression, as well as complications. The participants debated how to determine appropriate therapeutic approaches based on disease pathophysiology and stage and defined remaining research gaps hindering a personalized medical approach for diabetes to drive the field to address these gaps. The authors recommend a structure for data stratification to define the phenotypes and genotypes of subtypes of diabetes that will facilitate individualized treatment.
  •  
5.
  • Mattsson, Niklas, 1979, et al. (författare)
  • Association of brain amyloid-beta with cerebral perfusion and structure in Alzheimer's disease and mild cognitive impairment
  • 2014
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 137, s. 1550-1561
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-beta pathology. Using 182 subjects from the Alzheimer's Disease Neuroimaging Initiative we tested associations of amyloid-beta with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer's disease with dementia (n = 24). Based on the theory that Alzheimer's disease starts with amyloid-beta accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-beta-negative controls and -positive subjects in different diagnostic groups, and if amyloid-beta had different associations with cerebral blood flow and grey matter volume. Global amyloid-beta load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-beta load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-beta-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-beta with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-beta being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-beta pathology affects cerebral blood flow across the span from controls to dementia patients. Amyloid-beta pathology has different associations with cerebral blood flow and volume, and may cause more loss of blood flow in early stages, whereas volume loss dominates in late disease stages.
  •  
6.
  • Ewart, L, et al. (författare)
  • Application of Microphysiological Systems to Enhance Safety Assessment in Drug Discovery
  • 2018
  • Ingår i: Annual review of pharmacology and toxicology. - : Annual Reviews. - 1545-4304 .- 0362-1642. ; 58, s. 65-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhancing the early detection of new therapies that are likely to carry a safety liability in the context of the intended patient population would provide a major advance in drug discovery. Microphysiological systems (MPS) technology offers an opportunity to support enhanced preclinical to clinical translation through the generation of higher-quality preclinical physiological data. In this review, we highlight this technological opportunity by focusing on key target organs associated with drug safety and metabolism. By focusing on MPS models that have been developed for these organs, alongside other relevant in vitro models, we review the current state of the art and the challenges that still need to be overcome to ensure application of this technology in enhancing drug discovery.
  •  
7.
  • Moseby-Knappe, Marion, et al. (författare)
  • Serum Neurofilament Light Chain for Prognosis of Outcome after Cardiac Arrest
  • 2019
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149 .- 2168-6157. ; 76:1, s. 64-64
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Prognostication of neurologic outcome after cardiac arrest is an important but challenging aspect of patient therapy management in critical care units. Objective: To determine whether serum neurofilament light chain (NFL) levels can be used for prognostication of neurologic outcome after cardiac arrest. Design, Setting and Participants: Prospective clinical biobank study of data from the randomized Target Temperature Management After Cardiac Arrest trial, an international, multicenter study with 29 participating sites. Patients were included between November 11, 2010, and January 10, 2013. Serum NFL levels were analyzed between August 1 and August 23, 2017, after trial completion. A total of 782 unconscious patients with out-of-hospital cardiac arrest of presumed cardiac origin were eligible. Exposures: Serum NFL concentrations analyzed at 24, 48, and 72 hours after cardiac arrest with an ultrasensitive immunoassay. Main Outcomes and Measures: Poor neurologic outcome at 6-month follow-up, defined according to the Cerebral Performance Category Scale as cerebral performance category 3 (severe cerebral disability), 4 (coma), or 5 (brain death). Results: Of 782 eligible patients, 65 patients (8.3%) were excluded because of issues with aliquoting, missing sampling, missing outcome, or transport problems of samples. Of the 717 patients included (91.7%), 580 were men (80.9%) and median (interquartile range [IQR]) age was 65 (56-73) years. A total of 360 patients (50.2%) had poor neurologic outcome at 6 months. Median (IQR) serum NFL level was significantly increased in the patients with poor outcome vs good outcome at 24 hours (1426 [299-3577] vs 37 [20-70] pg/mL), 48 hours (3240 [623-8271] vs 46 [26-101] pg/mL), and 72 hours (3344 [845-7838] vs 54 [30-122] pg/mL) (P <.001 at all time points), with high overall performance (area under the curve, 0.94-0.95) and high sensitivities at high specificities (eg, 69% sensitivity with 98% specificity at 24 hours). Serum NFL levels had significantly greater performance than the other biochemical serum markers (ie, tau, neuron-specific enolase, and S100). At comparable specificities, serum NFL levels had greater sensitivity for poor outcome compared with routine electroencephalogram, somatosensory-evoked potentials, head computed tomography, and both pupillary and corneal reflexes (ranging from 29.2% to 49.0% greater for serum NFL level). Conclusions and Relevance: Findings from this study suggest that the serum NFL level is a highly predictive marker of long-term poor neurologic outcome at 24 hours after cardiac arrest and may be a useful complement to currently available neurologic prognostication methods.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy