SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Insel PA) "

Sökning: WFRF:(Insel PA)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Darwich, Adam S., et al. (författare)
  • Model-Informed Precision Dosing: Background, Requirements, Validation, Implementation, and Forward Trajectory of Individualizing Drug Therapy
  • 2021
  • Ingår i: Annual Review of Pharmacology and Toxicology. - : Annual Reviews Inc.. - 0362-1642 .- 1545-4304. ; 61:36, s. 1-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Model-informed precision dosing (MIPD) has become synonymous with modern approaches forindividualizing drug therapy, in which the characteristics of each patient are considered as opposedto applying a one-size-fits-all alternative. This review provides a brief account of the currentknowledge, practices, and opinions on MIPD while defining an achievable vision for MIPDin clinical care based on available evidence.We begin with a historical perspective on variabilityin dose requirements and then discuss technical aspects of MIPD, including the need for clinicaldecision support tools, practical validation, and implementation of MIPD in health care.Wealso discuss novel ways to characterize patient variability beyond the common perceptions of geneticcontrol. Finally, we address current debates on MIPD from the perspectives of the new drugdevelopment, health-care economics, and drug regulations.
  •  
2.
  • Ewart, L, et al. (författare)
  • Application of Microphysiological Systems to Enhance Safety Assessment in Drug Discovery
  • 2018
  • Ingår i: Annual review of pharmacology and toxicology. - : Annual Reviews. - 1545-4304 .- 0362-1642. ; 58, s. 65-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhancing the early detection of new therapies that are likely to carry a safety liability in the context of the intended patient population would provide a major advance in drug discovery. Microphysiological systems (MPS) technology offers an opportunity to support enhanced preclinical to clinical translation through the generation of higher-quality preclinical physiological data. In this review, we highlight this technological opportunity by focusing on key target organs associated with drug safety and metabolism. By focusing on MPS models that have been developed for these organs, alongside other relevant in vitro models, we review the current state of the art and the challenges that still need to be overcome to ensure application of this technology in enhancing drug discovery.
  •  
3.
  • Langguth, B, et al. (författare)
  • Therapeutic Approaches to the Treatment of Tinnitus
  • 2019
  • Ingår i: Annual review of pharmacology and toxicology. - : Annual Reviews. - 1545-4304 .- 0362-1642. ; 59, s. 291-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Tinnitus is a highly prevalent condition that is associated with hearing loss in most cases. In the absence of external stimuli, phantom perceptions of sounds emerge from alterations in neuronal activity within central auditory and nonauditory structures. Pioneering studies using lidocaine revealed that tinnitus is susceptible to pharmacological interventions. However, lidocaine is not effective in all patients, and no other drug has been identified with clear efficacy for the long-term treatment of tinnitus. In this review, we present recent advances in tinnitus research, including more detailed knowledge of its pathophysiology and involved neurotransmitter systems. Moreover, we summarize results from animal and clinical treatment studies as well as from studies that identified tinnitus as a side effect of pharmacological treatments. Finally, we focus on challenges in the development of pharmacological compounds for the treatment of tinnitus, namely the limitations of available animal models and of standardized clinical research methodologies.
  •  
4.
  • Lauschke, VM, et al. (författare)
  • Pharmacoepigenetics and Toxicoepigenetics: Novel Mechanistic Insights and Therapeutic Opportunities
  • 2018
  • Ingår i: Annual review of pharmacology and toxicology. - : Annual Reviews. - 1545-4304 .- 0362-1642. ; 58, s. 161-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Pharmacological treatment and exposure to xenobiotics can cause substantial changes in epigenetic signatures. The majority of these epigenetic changes, caused by the compounds in question, occur downstream of transcriptional activation mechanisms, whereby the epigenetic alterations can create a transcriptional memory and stably modulate cell function. The increasing understanding of epigenetic mechanisms and their importance in disease has prompted the development of therapeutic interventions that target epigenetic modulatory mechanisms, particularly in oncology where inhibitors of epigenetic-modifying proteins (epidrugs) have been successfully used in treatment, mostly in combination with standard-of-care chemotherapy, either provoking direct cytotoxicity or inhibiting resistance to anticancer drugs. In addition, emerging methods for detecting epigenetically modified DNA in bodily fluids may provide information about tumor phenotype or drug treatment success. However, it is important to note that many technical pitfalls, such as the nondeconvolution of methylcytosine and hydroxymethylcytosine, compromise epigenetic analyses and the interpretation of results. In this review, we provide an update on the field, with an emphasis on the novel therapeutic opportunities made possible by epidrugs.
  •  
5.
  • Molina, DM, et al. (författare)
  • The Cellular Thermal Shift Assay: A Novel Biophysical Assay for In Situ Drug Target Engagement and Mechanistic Biomarker Studies
  • 2016
  • Ingår i: Annual review of pharmacology and toxicology. - : Annual Reviews. - 1545-4304 .- 0362-1642. ; 56, s. 141-161
  • Tidskriftsartikel (refereegranskat)abstract
    • A drug must engage its intended target to achieve its therapeutic effect. However, conclusively measuring target engagement (TE) in situ is challenging. This complicates preclinical development and is considered a key factor in the high rate of attrition in clinical trials. Here, we discuss a recently developed, label-free, biophysical assay, the cellular thermal shift assay (CETSA), which facilitates the direct assessment of TE in cells and tissues at various stages of drug development. CETSA also reveals biochemical events downstream of drug binding and therefore provides a promising means of establishing mechanistic biomarkers. The implementation of proteome-wide CETSA using quantitative mass spectrometry represents a novel strategy for defining off-target toxicity and polypharmacology and for identifying downstream mechanistic biomarkers. The first year of CETSA applications in the literature has focused on TE studies in cell culture systems and has confirmed the broad applicability of CETSA to many different target families. The next phase of CETSA applications will likely encompass comprehensive animal and patient studies, and CETSA will likely serve as a very valuable tool in many stages of preclinical and clinical drug development.
  •  
6.
  • Orrenius, S, et al. (författare)
  • Autophagy in toxicology: cause or consequence?
  • 2013
  • Ingår i: Annual review of pharmacology and toxicology. - : Annual Reviews. - 1545-4304 .- 0362-1642. ; 53, s. 275-297
  • Tidskriftsartikel (refereegranskat)abstract
    • Research on autophagy and its effects on cell metabolism and physiology has increased dramatically during recent years. Multiple forms of autophagy have been characterized, and many of the genes involved in the regulation of this process have been identified. The importance of autophagy for embryonic development and maintenance of tissue homeostasis in the adult organism has been demonstrated convincingly, and several human diseases have been linked to deficiencies in autophagy. Most often, autophagy serves as a protective mechanism, but persistent activation of autophagy can result in cell death. This is true for many toxic agents. In fact, there are ample examples of cross talk between autophagy and other modes of cell death after exposure to toxicants. However, the relative contribution of autophagy to the overall toxicity of these compounds is not always clear, and further research is needed to clarify the toxicological significance of this process.
  •  
7.
  • Orrenius, S, et al. (författare)
  • Role of Cell Death in Toxicology: Does It Matter How Cells Die?
  • 2019
  • Ingår i: Annual review of pharmacology and toxicology. - : Annual Reviews. - 1545-4304 .- 0362-1642. ; 59, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • My research activity started with studies on drug metabolism in rat liver microsomes in the early 1960s. The CO-binding pigment (cytochrome P450) had been discovered a few years earlier and was subsequently found to be involved in steroid hydroxylation in adrenal cortex microsomes. Our early studies suggested that it also participated in the oxidative demethylation of drugs catalyzed by liver microsomes, and that prior treatment of the animals with phenobarbital caused increased levels of the hemoprotein in the liver, and similarly enhanced rates of drug metabolism. Subsequent studies of cytochrome P450-mediated metabolism of toxic drugs in freshly isolated rat hepatocytes characterized critical cellular defense systems and identified mechanisms by which accumulating toxic metabolites could damage and kill the cells. These studies revealed that multiple types of cell death could result from the toxic injury, and that it is important to know which type of cell death results from the toxic injury.
  •  
8.
  • Smith, CIE, et al. (författare)
  • Therapeutic Oligonucleotides: State of the Art
  • 2019
  • Ingår i: Annual review of pharmacology and toxicology. - : Annual Reviews. - 1545-4304 .- 0362-1642. ; 59, s. 605-630
  • Tidskriftsartikel (refereegranskat)abstract
    • Oligonucleotides (ONs) can interfere with biomolecules representing the entire extended central dogma. Antisense gapmer, steric block, splice-switching ONs, and short interfering RNA drugs have been successfully developed. Moreover, antagomirs (antimicroRNAs), microRNA mimics, aptamers, DNA decoys, DNAzymes, synthetic guide strands for CRISPR/Cas, and innate immunity-stimulating ONs are all in clinical trials. DNA-targeting, triplex-forming ONs and strand-invading ONs have made their mark on drug development research, but not yet as medicines. Both design and synthetic nucleic acid chemistry are crucial for achieving biologically active ONs. The dominating modifications are phosphorothioate linkages, base methylation, and numerous 2′-substitutions in the furanose ring, such as 2′-fluoro, O-methyl, or methoxyethyl. Locked nucleic acid and constrained ethyl, a related variant, are bridged forms where the 2′-oxygen connects to the 4′-carbon in the sugar. Phosphorodiamidate morpholino oligomers, carrying a modified heterocyclic backbone ring, have also been commercialized. Delivery remains a major obstacle, but systemic administration and intrathecal infusion are used for treatment of the liver and brain, respectively.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy