SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Inturi Raviteja 1985 ) "

Sökning: WFRF:(Inturi Raviteja 1985 )

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kruse, Thomas, et al. (författare)
  • Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Viral proteins make extensive use of short peptide interaction motifs to hijack cellular host factors. However, most current large-scale methods do not identify this important class of protein-protein interactions. Uncovering peptide mediated interactions provides both a molecular understanding of viral interactions with their host and the foundation for developing novel antiviral reagents. Here we describe a viral peptide discovery approach covering 23 coronavirus strains that provides high resolution information on direct virus-host interactions. We identify 269 peptide-based interactions for 18 coronaviruses including a specific interaction between the human G3BP1/2 proteins and an ΦxFG peptide motif in the SARS-CoV-2 nucleocapsid (N) protein. This interaction supports viral replication and through its ΦxFG motif N rewires the G3BP1/2 interactome to disrupt stress granules. A peptide-based inhibitor disrupting the G3BP1/2-N interaction dampened SARS-CoV-2 infection showing that our results can be directly translated into novel specific antiviral reagents.
  •  
2.
  • Mihalic, Filip, et al. (författare)
  • Identification of motif-based interactions between SARS-CoV-2 protein domains and human peptide ligands pinpoint antiviral targets
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The virus life cycle depends on host-virus protein-protein interactions, which often involve a disordered protein region binding to a folded protein domain. Here, we used proteomic peptide phage display (ProP-PD) to identify peptides from the intrinsically disordered regions of the human proteome that bind to folded protein domains encoded by the SARS-CoV-2 genome. Eleven folded domains of SARS-CoV-2 proteins were found to bind 281 peptides from human proteins, and affinities of 31 interactions involving eight SARS-CoV-2 protein domains were determined (KD ∼ 7-300 μM). Key specificity residues of the peptides were established for six of the interactions. Two of the peptides, binding Nsp9 and Nsp16, respectively, inhibited viral replication. Our findings demonstrate how high-throughput peptide binding screens simultaneously identify potential host-virus interactions and peptides with antiviral properties. Furthermore, the high number of low-affinity interactions suggest that overexpression of viral proteins during infection may perturb multiple cellular pathways.
  •  
3.
  • Mihalič, Filip, et al. (författare)
  • Large-scale phage-based screening reveals extensive pan-viral mimicry of host short linear motifs
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Viruses mimic host short linear motifs (SLiMs) to hijack and deregulate cellular functions. Studies of motif-mediated interactions therefore provide insight into virus-host dependencies, and reveal targets for therapeutic intervention. Here, we describe the pan-viral discovery of 1712 SLiM-based virus-host interactions using a phage peptidome tiling the intrinsically disordered protein regions of 229 RNA viruses. We find mimicry of host SLiMs to be a ubiquitous viral strategy, reveal novel host proteins hijacked by viruses, and identify cellular pathways frequently deregulated by viral motif mimicry. Using structural and biophysical analyses, we show that viral mimicry-based interactions have similar binding strength and bound conformations as endogenous interactions. Finally, we establish polyadenylate-binding protein 1 as a potential target for broad-spectrum antiviral agent development. Our platform enables rapid discovery of mechanisms of viral interference and the identification of potential therapeutic targets which can aid in combating future epidemics and pandemics.
  •  
4.
  • Inturi, Raviteja, 1985-, et al. (författare)
  • A splice variant of the human phosphohistidine phosphatase 1 (PHPT1) is degraded by the proteasome
  • 2014
  • Ingår i: International Journal of Biochemistry and Cell Biology. - : Elsevier. - 1357-2725 .- 1878-5875. ; 57, s. 69-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Regulation of protein activity by phosphorylation is central in many cellular processes. Phosphorylation of serine, threonine and tyrosine residues is well documented and studied. In addition, other amino acids, like histidine can be phosphorylated, but neither the mechanism nor the function of this modification is well understood. Nevertheless, there is a 14 kDa enzyme with phosphohistidine phosphatase activity, named PHPT1, found in most animals, but not in bacteria, plant or fungi. There are a few splice variant transcripts formed from the human PHPT1 locus and some of them are predicted to form variant proteins, but studies of these proteins are lacking. In order to get insight into the possible function of the variant transcripts encoded at the PHPT1 locus, ectopic expression of PHPT1 transcript variant 6, predicted to be degraded by the non-sense mediated mRNA decay pathway, in HeLa cells was undertaken. In HeLa cells the splice variant protein was degraded by the proteasome, unlike the wild type protein. Using an in silico modeling approach the variant C-terminal end of the proteins were predicted to form different secondary structures that might explain the different properties of the two proteins. The specific degradation of the PHPT1 splice variant indicates that at least for the PHPT1 protein, the quality control and the self-guarding of the cellular system works at two levels, first at the RNA level, aberrant transcripts are degraded by the non-sense mediated mRNA decay pathway, and the small amount of proteins that are formed will be degraded by the proteasome.
  •  
5.
  • Inturi, Raviteja, 1985-, et al. (författare)
  • Adenovirus Precursor pVII Protein Stability Is Regulated By Its Propeptide Sequence
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:11, s. e80617-
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenovirus encodes for the pVII protein, which interacts and modulates virus DNA structure in the infected cells. The pVII protein is synthesized as the precursor protein and undergoes proteolytic processing by viral proteinase Avp, leading to release of a propeptide sequence and accumulation of the mature VII protein. Here we elucidate the molecular functions of the propeptide sequence present in the precursor pVII protein. The results show that the propeptide is the destabilizing element targeting the precursor pVII protein for proteasomal degradation. Our data further indicate that the propeptide sequence and the lysine residues K26 and K27 regulate the precursor pVII protein stability in a co-dependent manner. We also provide evidence that the Cullin-3 E3 ubiquitin ligase complex alters the precursor pVII protein stability by association with the propeptide sequence. In addition, we show that inactivation of the Cullin-3 protein activity reduces adenovirus E1A gene expression during early phase of virus infection. Collectively, our results indicate a novel function of the adenovirus propeptide sequence and involvement of Cullin-3 in adenovirus gene expression.
  •  
6.
  • Inturi, Raviteja, 1985-, et al. (författare)
  • CRISPR/Cas9-based inactivation of human papillomavirus oncogenes E6 or E7 induces senescence in cervical cancer cells
  • 2021
  • Ingår i: Virology. - : Elsevier. - 0042-6822 .- 1096-0341. ; 562, s. 92-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Human papillomaviruses (HPVs) such as HPV16 and HPV18 can cause cancers of the cervix, anogenital and oropharyngeal sites. Continuous expression of the HPV oncoproteins E6 and E7 are essential for transformation and maintenance of cancer cells. Therefore, therapeutic targeting of E6 or E7 genes can potentially treat HPV-related cancers. Here we report that CRISPR/Cas9-based knockout of E6 or E7 can trigger cellular senescence in HPV18 immortalized HeLa cells. Specifically, E6 or E7-inactivated HeLa cells exhibited characteristic senescence markers like enlarged cell surface area, increased β-galactosidase expression and loss of lamin B1. Since E6 and E7 are bicistronic transcripts, inactivation of HPV18 E6 resulted in knockout of both E6 and E7 and increasing levels of p53/p21 and pRb/p21, respectively. Knockout of HPV18 E7 resulted in decreased E6 expression with activation of pRb/p21 pathway. Taken together, our study demonstrates cellular senescence as an alternative outcome of HPV oncogene inactivation by CRISPR/Cas9.
  •  
7.
  • Inturi, Raviteja, 1985- (författare)
  • Functional characterization of the human adenovirus pVII protein and non-coding VA RNAI
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Human adenovirus (HAdV) is a common pathogen causing a broad spectrum of diseases. HAdV encodes the pVII protein, which is involved in nuclear delivery, protection and expression of viral DNA. To suppress the cellular interferon (IFN) and RNA interference (RNAi) systems, HAdVs encode non-coding virus-associated (VA) RNAs. In this thesis we have investigated the functional significance of the pVII protein and VA RNAI in HAdV-5 infected cells.We report that the propeptide module is the destabilizing element targeting the precursor pVII protein for proteasomal degradation. We also found that the Cul3-based E3 ubiquitin ligase complex alter the precursor pVII protein stability via binding to the propeptide sequence. In addition, we show that inhibition of the Cul3 protein reduces HAdV-5 E1A gene expression. Collectively, our results suggest a novel function for the pVII propeptide module and involvement of Cul3 in viral E1A gene expression.Our studies show that the cellular E3 ubiquitin ligase MKRN1 is a novel pVII interacting protein in HAdV-5 infected cells. MKRN1 expression reduced the pVII protein accumulation in virus-infected cells and affected infectious virus formation. Surprisingly, the endogenous MKRN1 protein underwent proteasomal degradation during the prolonged HAdV-5 infection. Furthermore, the precursor pVII protein enhanced MKRN1 self-ubiquitination, suggesting the direct involvement of pVII in the initiation of MKRN1 degradation. Hence, we propose that the MKRN1 is a novel antiviral protein and that HAdV-5 infection counteracts its antiviral activity.In papers III and IV, we tested the ability of various plant and animal virus encoded RNAi/miRNA and IFN suppressor proteins to functionally substitute for the HAdV-5 VA RNAI. Our results revealed that the Vaccinia virus E3L protein was able to partially substitute for the HAdV-5 VA RNAI functions in virus-infected cells. Interestingly, the E3L protein rescued the translational defect but did not stimulate viral capsid mRNA accumulation observed with VA RNA. Additionally, we show that the HAdV-4 and HAdV-37 VA RNAI are more effective in virus replication compared to HAdV-5 and HAdV-12 VA RNAI. In paper IV, we employed a novel triplex-specific probing assay, based on the intercalating and cleaving agent benzoquinoquinaxline 1,10-phenanthroline (BQQ-OP), to unravel triplex structure formation in 
VA RNAI. The BQQ-OP cleavage of HAdV-4 VA RNAI indicates that a potential 
triplex is formed involving the highly conserved stem 4 of the central domain and side 
stem 7. Further, the integrity of HAdV-4 VA RNAI stem 7 contributes to the virus growth in vivo.
  •  
8.
  • Inturi, Raviteja, 1985-, et al. (författare)
  • Human Adenovirus Infection Causes Cellular E3 Ubiquitin Ligase MKRN1 Degradation Involving the Viral Core Protein pVII.
  • 2018
  • Ingår i: Journal of Virology. - 0022-538X .- 1098-5514. ; 92:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Human adenoviruses (HAdVs) are common human pathogens encoding a highly abundant histone-like core protein, VII, which is involved in nuclear delivery and protection of viral DNA as well as in sequestering immune danger signals in infected cells. The molecular details of how protein VII acts as a multifunctional protein have remained to a large extent enigmatic. Here we report the identification of several cellular proteins interacting with the precursor pVII protein. We show that the cellular E3 ubiquitin ligase MKRN1 is a novel precursor pVII-interacting protein in HAdV-C5-infected cells. Surprisingly, the endogenous MKRN1 protein underwent proteasomal degradation during the late phase of HAdV-C5 infection in various human cell lines. MKRN1 protein degradation occurred independently of the HAdV E1B55K and E4orf6 proteins. We provide experimental evidence that the precursor pVII protein binding enhances MKRN1 self-ubiquitination, whereas the processed mature VII protein is deficient in this function. Based on these data, we propose that the pVII protein binding promotes MKRN1 self-ubiquitination, followed by proteasomal degradation of the MKRN1 protein, in HAdV-C5-infected cells. In addition, we show that measles virus and vesicular stomatitis virus infections reduce the MKRN1 protein accumulation in the recipient cells. Taken together, our results expand the functional repertoire of the HAdV-C5 precursor pVII protein in lytic virus infection and highlight MKRN1 as a potential common target during different virus infections. IMPORTANCE: Human adenoviruses (HAdVs) are common pathogens causing a wide range of diseases. To achieve pathogenicity, HAdVs have to counteract a variety of host cell antiviral defense systems, which would otherwise hamper virus replication. In this study, we show that the HAdV-C5 histone-like core protein pVII binds to and promotes self-ubiquitination of a cellular E3 ubiquitin ligase named MKRN1. This mutual interaction between the pVII and MKRN1 proteins may prime MKRN1 for proteasomal degradation, because the MKRN1 protein is efficiently degraded during the late phase of HAdV-C5 infection. Since MKRN1 protein accumulation is also reduced in measles virus- and vesicular stomatitis virus-infected cells, our results signify the general strategy of viruses to target MKRN1.
  •  
9.
  • Laursen, Louise, 1988-, et al. (författare)
  • Determinants of affinity, specificity, and phase separation in a supramodule from Post-synaptic density protein 95
  • 2022
  • Ingår i: iScience. - : Cell Press. - 2589-0042. ; 25:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The post-synaptic density (PSD) is a phase-separated membraneless compartment of proteins including PSD-95 that undergoes morphological alteration in response to synaptic activity. Here, we investigated the interactome of a three-domain supramodule, PDZ3-SH3-GK (PSG) from PSD-95 using bioinformatics to identify potential binding partners, and biophysical methods to characterize the interaction with peptides from these proteins. PSG and the single PDZ3 domain bound similar peptides, but with different specificity. Furthermore, we found that the protein ADGRB1 formed liquid droplets with the PSG supramodule, extending the model for PSD formation. Moreover, certain mutations, introduced outside of the binding pocket in PDZ3, increased the affinity and specificity of the interaction and the size of liquid droplets. Other mutations within the ligand binding pocket lead to a new binding motif specificity. Our results show how the context in terms of supertertiary structure modulates affinity, specificity, and phase separation, and how these properties can evolve by point mutation.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (8)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (8)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Inturi, Raviteja, 19 ... (10)
Jemth, Per (5)
Andersson, Eva (3)
Ivarsson, Ylva (3)
Överby, Anna K. (3)
Benz, Caroline (3)
visa fler...
Simonetti, Leandro (3)
Mihalic, Filip (3)
Davey, Norman E. (3)
Lindquist, Richard, ... (3)
Kassa, Eszter (2)
Ali, Muhammad, 1990- (2)
Sayadi, Ahmed (2)
Aronsson, Hanna (2)
Punga, Tanel (2)
Punga, Tanel, PhD, 1 ... (2)
Mun, Kwangchol (2)
Nilsson, Emma (1)
Ek, Pia (1)
Schreiner, Sabrina (1)
Nilsson, Jakob (1)
Söderberg, Ola, 1966 ... (1)
Bjerling, Pernilla (1)
Dobritzsch, Doreen, ... (1)
McInerney, Gerald (1)
Chi, Celestine N. (1)
Krystkowiak, Izabell ... (1)
Kliche, Johanna (1)
Mann, Matthias (1)
Badgujar, Dilip (1)
Garvanska, Dimitriya ... (1)
Coscia, Fabian (1)
Kruse, Thomas (1)
Wäneskog, Marcus (1)
Rubin Sander, Marie (1)
Vlachakis, Dimitrios (1)
Ali, Yeasmeen (1)
Thaduri, Srinivas (1)
Punga, Tanel, Dr. (1)
Akusjarvi, Goran, Pr ... (1)
Dobner, Thomas, Prof ... (1)
Singethan, Katrin (1)
Moliner Morro, Ainho ... (1)
Mund, Andreas (1)
Laursen, Louise, 198 ... (1)
Ostergaard, Soren (1)
Giudice, Girolamo (1)
Petsalaki, Evangelia (1)
Peters, Marie Berit ... (1)
visa färre...
Lärosäte
Uppsala universitet (10)
Umeå universitet (3)
Karolinska Institutet (1)
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8)
Medicin och hälsovetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy