SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Irby J.) "

Search: WFRF:(Irby J.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Creely, A. J., et al. (author)
  • Overview of the SPARC tokamak
  • 2020
  • In: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 86:5
  • Journal article (peer-reviewed)abstract
    • The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field (B-0 = 12.2 T), compact (R-0 = 1.85 m, a = 0.57 m), superconducting, D-T tokamak with the goal of producing fusion gain Q > 2 from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of Q > 2 is achievable with conservative physics assumptions (H-98,H- y2 = 0.7) and, with the nominal assumption of H-98,H- y2 = 1, SPARC is projected to attain Q approximate to 11 and P-fusion approximate to 140 MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density (< n(e)> approximate to 3 x 10(20) m(-3)), high temperature (< Te > approximate to 7 keV) and high power density (P-fusion/V-plasma approximate to 7 MWm(-3)) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
  •  
2.
  • Feng, Shaohong, et al. (author)
  • Dense sampling of bird diversity increases power of comparative genomics
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 587:7833
  • Journal article (peer-reviewed)abstract
    • Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity(1-4). Sparse taxon sampling has previously been proposed to confound phylogenetic inference(5), and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species. A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.
  •  
3.
  • Sweeney, R., et al. (author)
  • MHD stability and disruptions in the SPARC tokamak
  • 2020
  • In: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 86:5
  • Journal article (peer-reviewed)abstract
    • SPARC is being designed to operate with a normalized beta of beta(N) = 1.0, a normalized density of n(G) = 0.37 and a safety factor of q(95) approximate to 3.4, providing a comfortable margin to their respective disruption limits. Further, a low beta poloidal beta(p) = 0.19 at the safety factor q = 2 surface reduces the drive for neoclassical tearing modes, which together with a frozen-in classically stable current profile might allow access to a robustly tearing-free operating space. Although the inherent stability is expected to reduce the frequency of disruptions, the disruption loading is comparable to and in some cases higher than that of ITER. The machine is being designed to withstand the predicted unmitigated axisymmetric halo current forces up to 50 MN and similarly large loads from eddy currents forced to flow poloidally in the vacuum vessel. Runaway electron (RE) simulations using GO+CODE show high flattop-to-RE current conversions in the absence of seed losses, although NIMROD modelling predicts losses of similar to 80 %; self-consistent modelling is ongoing. A passive RE mitigation coil designed to drive stochastic RE losses is being considered and COMSOL modelling predicts peak normalized fields at the plasma of order 10(-2) that rises linearly with a change in the plasma current. Massive material injection is planned to reduce the disruption loading. A data-driven approach to predict an oncoming disruption and trigger mitigation is discussed.
  •  
4.
  • De Angeli, M., et al. (author)
  • Cross machine investigation of magnetic tokamak dust : Morphological and elemental analysis
  • 2021
  • In: Fusion engineering and design. - : Elsevier BV. - 0920-3796 .- 1873-7196. ; 166
  • Journal article (peer-reviewed)abstract
    • The presence of magnetic dust can be an important issue for future fusion reactors where plasma breakdown is critical. Magnetic dust has been collected from contemporary fusion devices (FTU, Alcator C-Mod, COMPASS and DIII-D) that feature different plasma facing components. The results of morphological and elemental analysis are presented. Magnetic dust is based on steel or nickel alloys and its magnetism is generated by intense plasma material interactions. In spite of the strong similarities in terms of morphology and composition, X-ray diffraction analysis revealed differences in the structural evolution that leads to non-trivial magnetic responses.
  •  
5.
  • De Angeli, M., et al. (author)
  • Cross machine investigation of magnetic tokamak dust; structural and magnetic analysis
  • 2021
  • In: Nuclear Materials and Energy. - : Elsevier BV. - 2352-1791. ; 28
  • Journal article (peer-reviewed)abstract
    • Magnetic dust collected from multiple fusion devices (FTU, Alcator C-Mod, COMPASS) that feature different plasma-facing components (PFCs) and toroidal magnetic fields has been analyzed by means of the X-ray diffraction technique aiming to investigate the nature and origin of dust magnetism. Analysis led to the conclusion that the main mechanism of ferromagnetic dust formation is the change of iron crystalline phase from austenitic to ferritic during the re-solidification of stainless steel droplets. Analysis also revealed differences in the collected dust structure and an unexpectedly high amount of stainless steel based dust in its native austenitic phase. Theoretical estimates showed that the magnetic moment force can also mobilize strongly paramagnetic adhered dust prior to the establishment of proper tokamak discharges. The post-mortem analysis of dust collected during pure magnetic discharges in FTU confirmed these estimates.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view