SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Isac Dragos Lucian) "

Sökning: WFRF:(Isac Dragos Lucian)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Coroaba, Adina, et al. (författare)
  • Probing the supramolecular features via π–π interaction of a di-iminopyrene-di-benzo-18-crown-6-ether compound : experimental and theoretical study
  • 2020
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 10:63, s. 38304-38315
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel DPyDB-CN-18C6 compound was synthesised by linking a pyrene moiety to each phenyl group of dibenzo-18-crown-6-ether, the crown ether, through –HCN– bonds and characterized by FTIR, 1H-NMR, 13C-NMR, TGA, and DSC techniques. The quantitative 13C-NMR analysis revealed the presence of two position isomers. The electronic structure of the DPyDB-CN-18C6 molecule was characterized by UV-vis and fluorescence spectroscopies in four solvents with different polarities to observe particular behavior of isomers, as well as to demonstrate a possible non-bonding chemical association (such as ground- and excited-state associations, namely, to probe if there were forming dimers/excimers). The interpretation of the electronic structure was realized through QM calculations. The TD-CAM-B3LYP functional, at the 6-311+G(d,p) basis set, indicated the presence of predominant π → π* and mixed π → π* + n → π* transitions, in line with the UV-vis experimental data. Even though DPyDB-CN-18C6 computational studies revealed a π-extended conjugation effect with predominantly π → π* transitions, thorough fluorescence analysis was observed a weak emission, as an effect of PET and ACQ. In particular, the WAXD analysis of powder and thin films obtained from n-hexane, 1,2-dichloroethane, and ethanol indicated an amorphous organization, whereas from toluene a smectic ordering was obtained. These results were correlated with MD simulation, and it was observed that the molecular geometry of DPyDB-CN-18C6 molecule played a defining role in the pyrene stacking arrangement.
  •  
2.
  • Isac, Dragos Lucian, et al. (författare)
  • On the Charge-Transfer Excitations in Azobenzene Maleimide Compounds : A Theoretical Study
  • 2019
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 123:26, s. 5525-5536
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoswitchable systems with charge-transfer (CT) transitions have gained much attention during the recent years because of their many emerging applications. CT transitions themselves are of fundamental importance from physical, chemical, engineering, and molecular modeling points of view because they depend on the modified intramolecular electronic structure. CT transitions in azobenzene (AB) were observed when substituted with the maleimide (MI) functional group. This work represents a systematic theoretical study of excited states of the AB MI structures of eight azo derivatives. In addition to the two main azo transitions (pi -> pi* and n -> pi*), our calculations show a CT occurring between the azo moiety as a donor and the MI group as an acceptor. The CT mechanism can be characterized based on both the number and the position of the MI fragments. MI groups in the azo structure result in low-energy transitions, changing the order of the main transitions by introducing a CT character. Calculations using both density functional theory (DFT) and high-end molecular orbital theories confirm the CT character of these derivatives, although the order of excited states was found to differ depending on the chosen level of theory. We present here the first theoretical investigation of the electronic excited states (n pi*CT and pi pi*CT) and corresponding transitions for this class of compounds. The computational results showed that the CT mechanism in AB MI derivatives can occur via two pathways: planar and twisted. Our findings are expected to be of substantial interest, especially in the area of molecular optoelectronics and in the design of responsive materials.
  •  
3.
  • Neamtu, Andrei, et al. (författare)
  • Molecular dynamics simulations reveal the hidden EF-hand of EF-SAM as a possible key thermal sensor for STIM1 activation by temperature
  • 2023
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 299:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracellular calcium signaling is essential for many cellular processes, including store-operated Ca2+ entry (SOCE), which is initiated by stromal interaction molecule 1 (STIM1) detecting endoplasmic reticulum (ER) Ca2+ depletion. STIM1 is also activated by temperature independent of ER Ca2+ depletion. Here we provide evidence, from advanced molecular dynamics simulations, that EF-SAM may act as a true temperature sensor for STIM1, with the prompt and extended unfolding of the hidden EF-hand subdomain (hEF) even at slightly elevated temperatures, exposing a highly conserved hydrophobic Phe108. Our study also suggests an interplay between Ca2+ and temperature sensing, as both, the canonical EF-hand subdomain (cEF) and the hidden EF-hand subdomain (hEF), exhibit much higher thermal stability in the Ca2+-loaded form compared to the Ca2+-free form. The SAM domain, surprisingly, displays high thermal stability compared to the EF-hands and may act as a stabilizer for the latter. We propose a modular architecture for the EF-hand-SAM domain of STIM1 composed of a thermal sensor (hEF), a Ca2+ sensor (cEF), and a stabilizing domain (SAM). Our findings provide important insights into the mechanism of temperature-dependent regulation of STIM1, which has broad implications for understanding the role of temperature in cellular physiology.
  •  
4.
  • Vasiliu, Tudor, et al. (författare)
  • In silico study of PEI-PEG-squalene-dsDNA polyplex formation: the delicate role of the PEG length in the binding of PEI to DNA
  • 2021
  • Ingår i: Biomaterials Science. - : Royal Society of Chemistry. - 2047-4830 .- 2047-4849. ; 9:19, s. 6623-6640
  • Tidskriftsartikel (refereegranskat)abstract
    • Biocompatible hydrophilic polyethylene glycol (PEG) is widely used in biomedical applications, such as drug or gene delivery, tissue engineering or as an antifouling component in biomedical devices. Experimental studies have shown that the size of PEG can weaken polycation-polyanion interactions, like those between branched polyethyleneimine (b-PEI) and DNA in gene carriers, but details of its cause and underlying interactions on the atomic scale are still not clear. To better understand the interaction mechanisms in the formation of polyplexes between b-PEI-PEG based carriers and DNA, we have used a combination of in silico tools and experiments on three multicomponent systems differing in PEG MW. Using the PEI-PEG-squalene-dsDNA systems of the same size, both in the all-atom MD simulations and in experimental in-gel electrophoresis measurements, we found that the binding between DNA and the vectors is highly influenced by the size of PEG, with the binding efficiency increasing with a shorter PEG length. The mechanism of how PEG interferes with the binding between PEI and DNA is explained using a two-step MD simulation protocol that showed that the DNA-vector interactions are influenced by the PEG length due to the hydrogen bond formation between PEI and PEG. Although computationally demanding we find it important to study molecular systems of the same size both in silico and in a laboratory and to simulate the behaviour of the carrier prior to the addition of bioactive molecules to understand the molecular mechanisms involved in the formation of the polyplex.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy