SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Isac J. M) "

Sökning: WFRF:(Isac J. M)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:2
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Lopez-Isac, E, et al. (författare)
  • GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4955-
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.
  •  
3.
  • Mayes, Maureen D, et al. (författare)
  • Immunochip analysis identifies multiple susceptibility Loci for systemic sclerosis.
  • 2014
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 94:1, s. 47-61
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci.
  •  
4.
  • López-Isac, Elena, et al. (författare)
  • Brief Report : IRF4 Newly Identified as a Common Susceptibility Locus for Systemic Sclerosis and Rheumatoid Arthritis in a Cross-Disease Meta-Analysis of Genome-Wide Association Studies
  • 2016
  • Ingår i: Arthritis & Rheumatology. - : Wiley. - 2326-5191 .- 2326-5205. ; 68:9, s. 2338-2344
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Systemic sclerosis (SSc) and rheumatoid arthritis (RA) are autoimmune diseases that have similar clinical and immunologic characteristics. To date, several shared SSc–RA genetic loci have been identified independently. The aim of the current study was to systematically search for new common SSc–RA loci through an interdisease meta–genome-wide association (meta-GWAS) strategy. Methods: The study was designed as a meta-analysis combining GWAS data sets of patients with SSc and patients with RA, using a strategy that allowed identification of loci with both same-direction and opposite-direction allelic effects. The top single-nucleotide polymorphisms were followed up in independent SSc and RA case–control cohorts. This allowed an increase in the sample size to a total of 8,830 patients with SSc, 16,870 patients with RA, and 43,393 healthy controls. Results: This cross-disease meta-analysis of the GWAS data sets identified several loci with nominal association signals (P < 5 × 10−6) that also showed evidence of association in the disease-specific GWAS scans. These loci included several genomic regions not previously reported as shared loci, as well as several risk factors that were previously found to be associated with both diseases. Follow-up analyses of the putatively new SSc–RA loci identified IRF4 as a shared risk factor for these 2 diseases (Pcombined = 3.29 × 10−12). Analysis of the biologic relevance of the known SSc–RA shared loci identified the type I interferon and interleukin-12 signaling pathways as the main common etiologic factors. Conclusion: This study identified a novel shared locus, IRF4, for the risk of SSc and RA, and highlighted the usefulness of a cross-disease GWAS meta-analysis strategy in the identification of common risk loci.
  •  
5.
  •  
6.
  • Villanueva-Martin, G, et al. (författare)
  • The Effect of Body Fat Distribution on Systemic Sclerosis
  • 2022
  • Ingår i: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 11:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity contributes to a chronic proinflammatory state, which is a known risk factor to develop immune-mediated diseases. However, its role in systemic sclerosis (SSc) remains to be elucidated. Therefore, we conducted a two-sample mendelian randomization (2SMR) study to analyze the effect of three body fat distribution parameters in SSc. As instrumental variables, we used the allele effects described for single nucleotide polymorphisms (SNPs) in different genome-wide association studies (GWAS) for SSc, body mass index (BMI), waist-to-hip ratio (WHR) and WHR adjusted for BMI (WHRadjBMI). We performed local (pHESS) and genome-wide (LDSC) genetic correlation analyses between each of the traits and SSc and we applied several Mendelian randomization (MR) methods (i.e., random effects inverse-variance weight, MR-Egger regression, MR pleiotropy residual sum and outlier method and a multivariable model). Our results show no genetic correlation or causal relationship between any of these traits and SSc. Nevertheless, we observed a negative causal association between WHRadjBMI and SSc, which might be due to the effect of gastrointestinal complications suffered by the majority of SSc patients. In conclusion, reverse causality might be an especially difficult confounding factor to define the effect of obesity in the onset of SSc.
  •  
7.
  • Middleton, Steven J, et al. (författare)
  • Nav1.7 is required for normal C-low threshold mechanoreceptor function in humans and mice.
  • 2022
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156 .- 0006-8950. ; 145:10, s. 3637-3653
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with bi-allelic loss of function mutations in the voltage-gated sodium channel Nav1.7 present with congenital insensitivity to pain (CIP), whilst low threshold mechanosensation is reportedly normal. Using psychophysics (n = 6 CIP participants and n = 86 healthy controls) and facial EMG (n = 3 CIP participants and n = 8 healthy controls) we have found that these patients also have abnormalities in the encoding of affective touch which is mediated by the specialised afferents; C-low threshold mechanoreceptors (C-LTMRs). In the mouse we found that C-LTMRs express high levels of Nav1.7. Genetic loss or selective pharmacological inhibition of Nav1.7 in C-LTMRs resulted in a significant reduction in the total sodium current density, an increased mechanical threshold and reduced sensitivity to non-noxious cooling. The behavioural consequence of loss of Nav1.7 in C-LTMRs in mice was an elevation in the von Frey mechanical threshold and less sensitivity to cooling on a thermal gradient. Nav1.7 is therefore not only essential for normal pain perception but also for normal C-LTMR function, cool sensitivity and affective touch.
  •  
8.
  • Tuulari, Jetro J., et al. (författare)
  • Neural correlates of gentle skin stroking in early infancy
  • 2019
  • Ingår i: Developmental Cognitive Neuroscience. - : Elsevier BV. - 1878-9293 .- 1878-9307. ; 35, s. 36-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical expressions of affection play a foundational role in early brain development, but the neural correlates of affective touch processing in infancy remain unclear. We examined brain responses to gentle skin stroking, a type of tactile stimulus associated with affectionate touch, in young infants. Thirteen term-born infants aged 11-36. days, recruited through the FinnBrain Birth Cohort Study, were included in the study. Soft brush strokes, which activate brain regions linked to somatosensory as well as socio-affective processing in children and adults, were applied to the skin of the right leg during functional magnetic resonance imaging. We examined infant brain responses in two regions-of-interest (ROIs) known to process gentle skin stroking - the postcentral gyrus and posterior insular cortex - and found significant responses in both ROIs. These results suggest that the neonate brain is responsive to gentle skin stroking within the first weeks of age, and that regions linked to primary somatosensory as well as socio-affective processing are activated. Our findings support the notion that social touch may play an important role in early life sensory processing. Future research will elucidate the significance of these findings for human brain development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy