SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Isham Valerie) "

Sökning: WFRF:(Isham Valerie)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ball, Frank, et al. (författare)
  • Seven challenges for metapopulation models of epidemics, including households models
  • 2015
  • Ingår i: Epidemics. - : Elsevier BV. - 1755-4365 .- 1878-0067. ; 10, s. 63-67
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper considers metapopulation models in the general sense, i.e. where the population is partitioned into sub-populations (groups, patches,...), irrespective of the biological interpretation they have, e.g. spatially segregated large sub-populations, small households or hosts themselves modelled as populations of pathogens. This framework has traditionally provided an attractive approach to incorporating more realistic contact structure into epidemic models, since it often preserves analytic tractability (in stochastic as well as deterministic models) but also captures the most salient structural inhomogeneity in contact patterns in many applied contexts. Despite the progress that has been made in both the theory and application of such metapopulation models, we present here several major challenges that remain for future work, focusing on models that, in contrast to agent-based ones, are amenable to mathematical analysis. The challenges range from clarifying the usefulness of systems of weakly-coupled large sub-populations in modelling the spread of specific diseases to developing a theory for endemic models with household structure. They include also developing inferential methods for data on the emerging phase of epidemics, extending metapopulation models to more complex forms of human social structure, developing metapopulation models to reflect spatial population structure, developing computationally efficient methods for calculating key epidemiological model quantities, and integrating within- and between-host dynamics in models.
  •  
2.
  • Marion, Glenn, et al. (författare)
  • Modelling : Understanding pandemics and how to control them
  • 2022
  • Ingår i: Epidemics. - : Elsevier BV. - 1755-4365 .- 1878-0067. ; 39
  • Tidskriftsartikel (refereegranskat)abstract
    • New disease challenges, societal demands and better or novel types of data, drive innovations in the structure, formulation and analysis of epidemic models. Innovations in modelling can lead to new insights into epidemic processes and better use of available data, yielding improved disease control and stimulating collection of better data and new data types. Here we identify key challenges for the structure, formulation, analysis and use of mathematical models of pathogen transmission relevant to current and future pandemics.
  •  
3.
  • Pellis, Lorenzo, et al. (författare)
  • Eight challenges for network epidemic models
  • 2015
  • Ingår i: Epidemics. - : Elsevier BV. - 1755-4365 .- 1878-0067. ; 10, s. 58-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Networks offer a fertile framework for studying the spread of infection in human and animal populations. However, owing to the inherent high-dimensionality of networks themselves, modelling transmission through networks is mathematically and computationally challenging. Even the simplest network epidemic models present unanswered questions. Attempts to improve the practical usefulness of network models by including realistic features of contact networks and of host pathogen biology (e.g. waning immunity) have made some progress, but robust analytical results remain scarce. A more general theory is needed to understand the impact of network structure on the dynamics and control of infection. Here we identify a set of challenges that provide scope for active research in the field of network epidemic models.
  •  
4.
  • Riley, Steven, et al. (författare)
  • Five challenges for spatial epidemic models
  • 2015
  • Ingår i: Epidemics. - : Elsevier BV. - 1755-4365 .- 1878-0067. ; 10, s. 68-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Infectious disease incidence data are increasingly available at the level of the individual and include high-resolution spatial components. Therefore, we are now better able to challenge models that explicitly represent space. Here, we consider five topics within spatial disease dynamics: the construction of network models; characterising threshold behaviour; modelling long-distance interactions; the appropriate scale for interventions; and the representation of population heterogeneity.
  •  
5.
  • Thompson, Robin N., et al. (författare)
  • Key questions for modelling COVID-19 exit strategies
  • 2020
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 287:1932
  • Tidskriftsartikel (refereegranskat)abstract
    • Combinations of intense non-pharmaceutical interventions (lockdowns) were introduced worldwide to reduce SARS-CoV-2 transmission. Many governments have begun to implement exit strategies that relax restrictions while attempting to control the risk of a surge in cases. Mathematical modelling has played a central role in guiding interventions, but the challenge of designing optimal exit strategies in the face of ongoing transmission is unprecedented. Here, we report discussions from the Isaac Newton Institute 'Models for an exit strategy' workshop (11-15 May 2020). A diverse community of modellers who are providing evidence to governments worldwide were asked to identify the main questions that, if answered, would allow for more accurate predictions of the effects of different exit strategies. Based on these questions, we propose a roadmap to facilitate the development of reliable models to guide exit strategies. This roadmap requires a global collaborative effort from the scientific community and policymakers, and has three parts: (i) improve estimation of key epidemiological parameters; (ii) understand sources of heterogeneity in populations; and (iii) focus on requirements for data collection, particularly in low-to-middle-income countries. This will provide important information for planning exit strategies that balance socio-economic benefits with public health.
  •  
6.
  • Vegvari, Carolin, et al. (författare)
  • Commentary on the use of the reproduction number R during the COVID-19 pandemic
  • 2022
  • Ingår i: Statistical Methods in Medical Research. - : SAGE Publications. - 0962-2802 .- 1477-0334. ; 31:9, s. 1675-1685
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the beginning of the COVID-19 pandemic, the reproduction number R has become a popular epidemiological metric used to communicate the state of the epidemic. At its most basic, R is defined as the average number of secondary infections caused by one primary infected individual. R seems convenient, because the epidemic is expanding if R>1 and contracting if R<1. The magnitude of R indicates by how much transmission needs to be reduced to control the epidemic. Using R in a naïve way can cause new problems. The reasons for this are threefold: (1) There is not just one definition of R but many, and the precise definition of R affects both its estimated value and how it should be interpreted. (2) Even with a particular clearly defined R, there may be different statistical methods used to estimate its value, and the choice of method will affect the estimate. (3) The availability and type of data used to estimate R vary, and it is not always clear what data should be included in the estimation. In this review, we discuss when R is useful, when it may be of use but needs to be interpreted with care, and when it may be an inappropriate indicator of the progress of the epidemic. We also argue that careful definition of R, and the data and methods used to estimate it, can make R a more useful metric for future management of the epidemic. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy