SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Isles C) "

Sökning: WFRF:(Isles C)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Pilla, Rachel M., et al. (författare)
  • Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade−1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m−3 decade−1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade−1), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade−1 to + 0.65 °C decade−1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.
  •  
3.
  • Pilla, Rachel M., et al. (författare)
  • Global data set of long-term summertime vertical temperature profiles in 153 lakes
  • 2021
  • Ingår i: Scientific Data. - : Springer Nature. - 2052-4463. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.
  •  
4.
  • Hrycik, Allison R., et al. (författare)
  • Earlier winter/spring runoff and snowmelt during warmer winters lead to lower summer chlorophyll-a in north temperate lakes
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:19, s. 4615-4629
  • Tidskriftsartikel (refereegranskat)abstract
    • Winter conditions, such as ice cover and snow accumulation, are changing rapidly at northern latitudes and can have important implications for lake processes. For example, snowmelt in the watershed—a defining feature of lake hydrology because it delivers a large portion of annual nutrient inputs—is becoming earlier. Consequently, earlier and a shorter duration of snowmelt are expected to affect annual phytoplankton biomass. To test this hypothesis, we developed an index of runoff timing based on the date when 50% of cumulative runoff between January 1 and May 31 had occurred. The runoff index was computed using stream discharge for inflows, outflows, or for flows from nearby streams for 41 lakes in Europe and North America. The runoff index was then compared with summer chlorophyll-a (Chl-a) concentration (a proxy for phytoplankton biomass) across 5–53 years for each lake. Earlier runoff generally corresponded to lower summer Chl-a. Furthermore, years with earlier runoff also had lower winter/spring runoff magnitude, more protracted runoff, and earlier ice-out. We examined several lake characteristics that may regulate the strength of the relationship between runoff timing and summer Chl-a concentrations; however, our tested covariates had little effect on the relationship. Date of ice-out was not clearly related to summer Chl-a concentrations. Our results indicate that ongoing changes in winter conditions may have important consequences for summer phytoplankton biomass and production.
  •  
5.
  • Meyer, Michael F., et al. (författare)
  • Virtual Growing Pains : Initial Lessons Learned from Organizing Virtual Workshops, Summits, Conferences, and Networking Events during a Global Pandemic
  • 2021
  • Ingår i: Limnology and Oceanography Bulletin. - : John Wiley & Sons. - 1539-607X .- 1539-6088. ; 30:1, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • For many, 2020 was a year of abrupt professional and personal change. For the aquatic sciences community, many were adapting to virtual formats for conducting and sharing science, while simultaneously learning to live in a socially distanced world. Understandably, the aquatic sciences community postponed or canceled most in-person scientific meetings. Still, many scientific communities either transitioned annual meetings to a virtual format or inaugurated new virtual meetings. Fortunately, increased use of video conferencing platforms, networking and communication applications, and a general comfort with conducting science virtually helped bring the in-person meeting experience to scientists worldwide. Yet, the transition to conducting science virtually revealed new barriers to participation whereas others were lowered. The combined lessons learned from organizing a meeting constitute a necessary knowledge base that will prove useful, as virtual conferences are likely to continue in some form. To concentrate and synthesize these experiences, we showcase how six scientific societies and communities planned, organized, and conducted virtual meetings in 2020. With this consolidated information in hand, we look forward to a future, where scientific meetings embrace a virtual component, so to as help make science more inclusive and global.
  •  
6.
  • Bergström, Ann-Kristin, 1968-, et al. (författare)
  • Biomass, community composition and N:P recycling ratios of zooplankton in northern high-latitude lakes with contrasting levels of N deposition and dissolved organic carbon
  • 2022
  • Ingår i: Freshwater Biology. - : John Wiley & Sons. - 0046-5070 .- 1365-2427. ; 67:9, s. 1508-1520
  • Tidskriftsartikel (refereegranskat)abstract
    • Global changes are causing decreases in inorganic nitrogen (N) concentrations, increases in coloured dissolved organic carbon (DOC) concentrations, and decreases in dissolved inorganic N to total phosphorus ratios (DIN:TP) in northern lakes. The effects of these changes on phytoplankton and zooplankton biomass and the N:P recycling ratio of zooplankton remain unresolved.In 33 Swedish headwater lakes across subarctic-to-boreal gradients with different levels of N deposition (low N in the north [Västerbotten, boreal; Abisko, subarctic] vs. high N in the south [Värmland, boreal; Jämtland, subarctic]), we measured water chemistry, phytoplankton biomass (chlorophyll-a [Chl-a], Chl-a:TP), seston mineral quality (C:P, N:P), as well as zooplankton biomass, community composition, and C:N:P stoichiometry. We estimated nutrient imbalances and the N:P recycling ratios of zooplankton using ecological stoichiometry models.There was a large-scale gradient from low lake DIN and DIN:TP in the north to high DIN and DIN:TP in the south, with lower DIN:TP in lakes coinciding with higher DOC within each region. Lower lake DIN was associated with lower phytoplankton biomass (lower Chl-a:TP). Lower lake DIN:TP was associated with richer seston mineral quality (lower seston C:P and N:P) and higher zooplankton biomass.Zooplankton community composition differed in the north vs. south, with a dominance of N-requiring calanoid copepods with high N:P in the north and P-requiring cladocerans with low N:P in the south. Also, greater differences in zooplankton community composition were found between subarctic regions (with lower DOC) than between boreal regions (with higher DOC), suggesting that increases in lake DOC and associated declines in lake DIN:TP reduce differences in zooplankton community composition.The combination of lower lake DIN, higher lake DOC, and lower lake DIN:TP led to reduced zooplankton N:P recycling ratios, possibly by reducing seston N:P and/or by enhancing calanoid copepod dominance in the zooplankton community.Our findings suggest that the combination of declining N deposition and increasing lake browning in northern high-latitude lakes will reduce phytoplankton biomass, but will concurrently enhance seston mineral quality and probably also zooplankton biomass and their recycling efficiency of P relative to N.
  •  
7.
  • Bergström, Ann-Kristin, 1968-, et al. (författare)
  • Changes in nutritional quality and nutrient limitation regimes of phytoplankton in response to declining N deposition in mountain lakes
  • 2020
  • Ingår i: Aquatic Sciences. - : Springer. - 1015-1621 .- 1420-9055. ; 82:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytoplankton play a key role in supporting aquatic food webs. However, the effects of ongoing large-scale changes in the concentrations and stoichiometry of important biological compounds [dissolved inorganic N (DIN), total phosphorus (TP), dissolved organic carbon (DOC) and DIN:TP] on the development and nutritional quality of phytoplankton for higher trophic levels are unclear. We conducted lake studies and in situ bioassay experiments in two Swedish mountain regions [Abisko (north) and Jamtland (south)] with different N deposition and where lakes in each region were distributed along a similar gradient in lake DOC (2-7 mg L-1) to assess whether differences in nutrients, DOC and DIN:TP induced differences in phytoplankton quantity [chlorophyll a (Chl-a) and seston carbon (C)] and quality [seston C:N:P stoichiometry and fatty acid (FA) composition]. Using long-term monitoring data from lakes in these two mountain regions, we found declining long-term trends in N deposition and lake DIN and total TP concentrations, but not in lake DIN:TP. Lakes in Abisko received lower N deposition and had lower DIN:TP than those in Jamtland. Phytoplankton was N- to NP-limited in Abisko lakes but NP dual-limited in Jamtland lakes. The N fertilization effects induced by higher DIN:TP were weak on phytoplankton quantity but strong on phytoplankton quality. The phytoplankton had lower eicosapentaenoic acid (EPA) content and higher P content (lower seston C:P) in Abisko compared to in Jamtland. In addition, the quality of the DOC (as indicated by its aromaticity and SUVA) influenced not only the light conditions and the seston C:P ratios, but also the FA composition. We found higher bacteria FA concentrations in seston in Abisko than in Jamtland, despite lower amounts of FA of terrestrial origin in Abisko. Our findings suggest that declining N deposition and enhanced colored terrestrial C loadings leads to lower nutritional quality of basal resources for higher consumers in mountain lakes.
  •  
8.
  • Bergström, Ann-Kristin, 1968-, et al. (författare)
  • Declining calcium concentration drives shifts toward smaller and less nutritious zooplankton in northern lakes
  • 2024
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 30:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Zooplankton community composition of northern lakes is changing due to the interactive effects of climate change and recovery from acidification, yet limited data are available to assess these changes combined. Here, we built a database using archives of temperature, water chemistry and zooplankton data from 60 Scandinavian lakes that represent broad spatial and temporal gradients in key parameters: temperature, calcium (Ca), total phosphorus (TP), total organic carbon (TOC), and pH. Using machine learning techniques, we found that Ca was the most important determinant of the relative abundance of all zooplankton groups studied, while pH was second, and TOC third in importance. Further, we found that Ca is declining in almost all lakes, and we detected a critical Ca threshold in lake water of 1.3 mg L−1, below which the relative abundance of zooplankton shifts toward dominance of Holopedium gibberum and small cladocerans at the expense of Daphnia and copepods. Our findings suggest that low Ca concentrations may shape zooplankton communities, and that current trajectories of Ca decline could promote widespread changes in pelagic food webs as zooplankton are important trophic links from phytoplankton to fish and different zooplankton species play different roles in this context.
  •  
9.
  • Brentrup, Jennifer A., et al. (författare)
  • The potential of high-frequency profiling to assess vertical and seasonal patterns of phytoplankton dynamics in lakes : an extension of the Plankton Ecology Group (PEG) model
  • 2016
  • Ingår i: Inland Waters. - 2044-2041 .- 2044-205X. ; 6:4, s. 565-580
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of high-frequency sensors on profiling buoys to investigate physical, chemical, and biological processes in lakes is increasing rapidly. Profiling buoys with automated winches and sensors that collect high-frequency chlorophyll fluorescence (ChlF) profiles in 11 lakes in the Global Lake Ecological Observatory Network (GLEON) allowed the study of the vertical and temporal distribution of ChlF, including the formation of subsurface chlorophyll maxima (SSCM). The effectiveness of 3 methods for sampling phytoplankton distributions in lakes, including (1) manual profiles, (2) single-depth buoys, and (3) profiling buoys were assessed. High-frequency ChlF surface data and profiles were compared to predictions from the Plankton Ecology Group (PEG) model. The depth-integrated ChlF dynamics measured by the profiling buoy data revealed a greater complexity that neither conventional sampling nor the generalized PEG model captured. Conventional sampling techniques would have missed SSCM in 7 of 11 study lakes. Although surface-only ChlF data underestimated average water column ChlF, at times by nearly 2-fold in 4 of the lakes, overall there was a remarkable similarity between surface and mean water column data. Contrary to the PEG model's proposed negligible role for physical control of phytoplankton during the growing season, thermal structure and light availability were closely associated with ChlF seasonal depth distribution. Thus, an extension of the PEG model is proposed, with a new conceptual framework that explicitly includes physical metrics to better predict SSCM formation in lakes and highlight when profiling buoys are especially informative.
  •  
10.
  • Lau, Danny C. P., et al. (författare)
  • Lowered nutritional quality of plankton caused by global environmental changes
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:23, s. 6294-6306
  • Tidskriftsartikel (refereegranskat)abstract
    • Global environmental changes are causing widespread nutrient depletion, declines in the ratio of dissolved inorganic nitrogen (N) to total phosphorus (DIN:TP), and increases in both water temperature and terrestrial colored dissolved organic carbon (DOC) concentration (browning) in high-latitude northern lakes. Declining lake DIN:TP, warming, and browning alter the nutrient limitation regime and biomass of phytoplankton, but how these stressors together affect the nutritional quality in terms of polyunsaturated fatty acid (PUFA) contents of the pelagic food web components remains unknown. We assessed the fatty acid compositions of seston and zooplankton in 33 lakes across south-to-north and boreal-to-subarctic gradients in Sweden. Data showed higher lake DIN:TP in the south than in the north, and that boreal lakes were warmer and browner than subarctic lakes. Lake DIN:TP strongly affected the PUFA contents—especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)—in seston, calanoids, and copepods (as a group), but not in cladocerans. The EPA+DHA contents increased by 123% in seston, 197% in calanoids, and 230% in copepods across a lake molar DIN:TP gradient from 0.17 to 14.53, indicating lower seston and copepod nutritional quality in the more N-limited lakes (those with lower DIN:TP). Water temperature affected EPA+DHA contents of zooplankton, especially cladocerans, but not seston. Cladoceran EPA+DHA contents were reduced by ca. 6% for every 1°C increase in surface water. Also, the EPA, DHA, or EPA+DHA contents of Bosmina, cyclopoids, and copepods increased in lakes with higher DOC concentrations or aromaticity. Our findings indicate that zooplankton food quality for higher consumers will decrease with warming alone (for cladocerans) or in combination with declining lake DIN:TP (for copepods), but impacts of these stressors are moderated by lake browning. Global environmental changes that drive northern lakes toward more N-limited, warmer, and browner conditions will reduce PUFA availability and nutritional quality of the pelagic food web components.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy