SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ito Akihiko) "

Sökning: WFRF:(Ito Akihiko)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chang, Kuang Yu, et al. (författare)
  • Observational constraints reduce model spread but not uncertainty in global wetland methane emission estimates
  • 2023
  • Ingår i: Global Change Biology. - 1354-1013. ; 29:15, s. 4298-4312
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent rise in atmospheric methane (CH4) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH4 source, estimates of global wetland CH4 emissions vary widely among approaches taken by bottom-up (BU) process-based biogeochemical models and top-down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi-model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH4 emission estimates and model performance. We find that using better-performing models identified by observational constraints reduces the spread of wetland CH4 emission estimates by 62% and 39% for BU- and TD-based approaches, respectively. However, global BU and TD CH4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH4 year−1) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter-site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH4 models to move beyond static benchmarking and focus on evaluating site-specific and ecosystem-specific variabilities inferred from observations.
  •  
2.
  • Ito, Akihiko, et al. (författare)
  • Soil carbon sequestration simulated in CMIP6-LUMIP models : Implications for climatic mitigation
  • 2020
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 15:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Land-use change affects both the quality and quantity of soil organic carbon (SOC) and leads to changes in ecosystem functions such as productivity and environmental regulation. Future changes in SOC are, however, highly uncertain owing to its heterogeneity and complexity. In this study, we analyzed the outputs of simulations of SOC stock by Earth system models (ESMs), most of which are participants in the Land-Use Model Intercomparison Project. Using a common protocol and the same forcing data, the ESMs simulated SOC distribution patterns and their changes during historical (1850-2014) and future (2015-2100) periods. Total SOC stock increased in many simulations over the historical period (30 ± 67 Pg C) and under future climate and land-use conditions (48 ± 32 Pg C for ssp126 and 49 ± 58 Pg C for ssp370). Land-use experiments indicated that changes in SOC attributable to land-use scenarios were modest at the global scale, in comparison with climatic and rising CO2 impacts, but they were notable in several regions. Future net soil carbon sequestration rates estimated by the ESMs were roughly 0.4‰ yr-1 (0.6 Pg C yr-1). Although there were considerable inter-model differences, the rates are still remarkable in terms of their potential for mitigation of global warming. The disparate results among ESMs imply that key parameters that control processes such as SOC residence time need to be better constrained and that more comprehensive representation of land management impacts on soils remain critical for understanding the long-term potential of soils to sequester carbon.
  •  
3.
  • Lu, Haibo, et al. (författare)
  • Comparing machine learning-derived global estimates of soil respiration and its components with those from terrestrial ecosystem models
  • 2021
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 16:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The CO2 efflux from soil (soil respiration (SR)) is one of the largest fluxes in the global carbon (C) cycle and its response to climate change could strongly influence future atmospheric CO2 concentrations. Still, a large divergence of global SR estimates and its autotrophic (AR) and heterotrophic (HR) components exists among process based terrestrial ecosystem models. Therefore, alternatively derived global benchmark values are warranted for constraining the various ecosystem model output. In this study, we developed models based on the global soil respiration database (version 5.0), using the random forest (RF) method to generate the global benchmark distribution of total SR and its components. Benchmark values were then compared with the output of ten different global terrestrial ecosystem models. Our observationally derived global mean annual benchmark rates were 85.5 ± 40.4 (SD) Pg C yr-1 for SR, 50.3 ± 25.0 (SD) Pg C yr-1 for HR and 35.2 Pg C yr-1 for AR during 1982-2012, respectively. Evaluating against the observations, the RF models showed better performance in both of SR and HR simulations than all investigated terrestrial ecosystem models. Large divergences in simulating SR and its components were observed among the terrestrial ecosystem models. The estimated global SR and HR by the ecosystem models ranged from 61.4 to 91.7 Pg C yr-1 and 39.8 to 61.7 Pg C yr-1, respectively. The most discrepancy lays in the estimation of AR, the difference (12.0-42.3 Pg C yr-1) of estimates among the ecosystem models was up to 3.5 times. The contribution of AR to SR highly varied among the ecosystem models ranging from 18% to 48%, which differed with the estimate by RF (41%). This study generated global SR and its components (HR and AR) fluxes, which are useful benchmarks to constrain the performance of terrestrial ecosystem models.
  •  
4.
  • Saunois, Marielle, et al. (författare)
  • The Global Methane Budget 2000–2017
  • 2020
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3516 .- 1866-3508. ; 12:3, s. 1561-1623
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations).For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters.Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.
  •  
5.
  • Schewe, Jacob, et al. (författare)
  • State-of-the-art global models underestimate impacts from climate extremes
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
  •  
6.
  • Stavert, Ann R., et al. (författare)
  • Regional trends and drivers of the global methane budget
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:1, s. 182-200
  • Tidskriftsartikel (refereegranskat)abstract
    • The ongoing development of the Global Carbon Project (GCP) global methane (CH4) budget shows a continuation of increasing CH4 emissions and CH4 accumulation in the atmosphere during 2000–2017. Here, we decompose the global budget into 19 regions (18 land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH4 emission estimates demonstrates robust temporal trends with CH4 emissions increasing in 16 of the 19 regions. Five regions—China, Southeast Asia, USA, South Asia, and Brazil—account for >40% of the global total emissions (their anthropogenic and natural sources together totaling >270 Tg CH4 yr−1 in 2008–2017). Two of these regions, China and South Asia, emit predominantly anthropogenic emissions (>75%) and together emit more than 25% of global anthropogenic emissions. China and the Middle East show the largest increases in total emission rates over the 2000 to 2017 period with regional emissions increasing by >20%. In contrast, Europe and Korea and Japan show a steady decline in CH4 emission rates, with total emissions decreasing by ~10% between 2000 and 2017. Coal mining, waste (predominantly solid waste disposal) and livestock (especially enteric fermentation) are dominant drivers of observed emissions increases while declines appear driven by a combination of waste and fossil emission reductions. As such, together these sectors present the greatest risks of further increasing the atmospheric CH4 burden and the greatest opportunities for greenhouse gas abatement.
  •  
7.
  • Takasaki, Akihiko, et al. (författare)
  • HPLC analysis of pheomelanin degradation products in human urine
  • 2003
  • Ingår i: Pigment Cell Research. - : Wiley. - 0893-5785 .- 1600-0749. ; 16:5, s. 480-486
  • Tidskriftsartikel (refereegranskat)abstract
    • A sensitive and specific high performance liquid chromatography (HPLC) method was developed to quantify 4-amino-3-hydroxyphenylalanine (4-AHP) and 3-amino-4-hydroxyphenylalanine (3-AHP) in urine. In degradation studies of melanin pigment, 4-AHP and 3-AHP are derived from benzothiazine units of pheomelanin and pheomelanin-related metabolites such as trichochromes. 5-S-Cysteinyldopa-derived benzothiazine products give 4-AHP while 2-S-cysteinyldopa-derived benzothiazine products give 3-AHP. 3-AHP is also derived from nitrotyrosine formed by nitration of tyrosine with reactive nitrogen species. For this reason, the influence of this biological process on the amount of 3-AHP found in biological material have been investigated. The method is based on hydriodic acid hydrolysis of the melanin polymer and reversed-phase HPLC with electrochemical detection of the degradation products 4-AHP and 3-AHP. The mobile phase consists of 25 mM ammonium acetate and sodium octanesulfonate as an ion-pairing reagent. The 4-AHP and 3-AHP peaks were well separated and the detector response was linear within the range 0-2 ng injected for both compounds. With the developed chromatographic system, 4-AHP and 3-AHP showed good separation in the biological samples. There was a strong correlation between 4-AHP and 3-AHP in the urine of 50 malignant melanoma patients and two healthy subjects (R0.977). The two compounds were also strongly correlated with 5-S-cysteinyldopa in urine, the correlation coefficients being 0.862 and 0.907, respectively. The method described is sensitive enough for analysis of pheomelanin in urine and in several other biological samples. The results indicate that 3-AHP in urine is not influenced by excreted 3-nitrotyrosine and the data indicate that pheomelanins are excreted in the urine of melanoma patients.
  •  
8.
  • Thurner, Martin, et al. (författare)
  • Evaluation of climate-related carbon turnover processes in global vegetation models for boreal and temperate forests
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:8, s. 3076-3091
  • Tidskriftsartikel (refereegranskat)abstract
    • Turnover concepts in state-of-the-art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here, we evaluate vegetation carbon turnover processes in GVMs participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation-based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought, and insect outbreaks to better reproduce observation-based spatial patterns in k is identified. As direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation-based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects such as carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large-scale mortality agents, mortality mechanisms related to insects and pathogens are not explicitly treated in these models.
  •  
9.
  • Tian, Hanqin, et al. (författare)
  • Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models : Magnitude, attribution, and uncertainty
  • 2019
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 25:2, s. 640-659
  • Tidskriftsartikel (refereegranskat)abstract
    • Our understanding and quantification of global soil nitrous oxide (N2O) emissions and the underlying processes remain largely uncertain. Here, we assessed the effects of multiple anthropogenic and natural factors, including nitrogen fertilizer (N) application, atmospheric N deposition, manure N application, land cover change, climate change, and rising atmospheric CO2 concentration, on global soil N2O emissions for the period 1861–2016 using a standard simulation protocol with seven process-based terrestrial biosphere models. Results suggest global soil N2O emissions have increased from 6.3 ± 1.1 Tg N2O-N/year in the preindustrial period (the 1860s) to 10.0 ± 2.0 Tg N2O-N/year in the recent decade (2007–2016). Cropland soil emissions increased from 0.3 Tg N2O-N/year to 3.3 Tg N2O-N/year over the same period, accounting for 82% of the total increase. Regionally, China, South Asia, and Southeast Asia underwent rapid increases in cropland N2O emissions since the 1970s. However, US cropland N2O emissions had been relatively flat in magnitude since the 1980s, and EU cropland N2O emissions appear to have decreased by 14%. Soil N2O emissions from predominantly natural ecosystems accounted for 67% of the global soil emissions in the recent decade but showed only a relatively small increase of 0.7 ± 0.5 Tg N2O-N/year (11%) since the 1860s. In the recent decade, N fertilizer application, N deposition, manure N application, and climate change contributed 54%, 26%, 15%, and 24%, respectively, to the total increase. Rising atmospheric CO2 concentration reduced soil N2O emissions by 10% through the enhanced plant N uptake, while land cover change played a minor role. Our estimation here does not account for indirect emissions from soils and the directed emissions from excreta of grazing livestock. To address uncertainties in estimating regional and global soil N2O emissions, this study recommends several critical strategies for improving the process-based simulations.
  •  
10.
  • Wakamatsu, Kazumasa, et al. (författare)
  • Determination of eumelanin in human urine
  • 2006
  • Ingår i: Pigment Cell Research. - : Wiley. - 0893-5785 .- 1600-0749. ; 19:2, s. 163-169
  • Tidskriftsartikel (refereegranskat)abstract
    • Normal and malignant melanocytes produce melanins and melanin-related metabolites, most of which are retained in the cells but some are secreted into the blood and then excreted in the urine. In this study, we developed a method to measure levels of eumelanin in urine samples and evaluated its clinical significance in comparison with the melanin-related metabolites 6-hydroxy-5-methoxyindole-2-carboxylic acid (6H5MI2C) and 5-S-cysteinyldopa (5-S-CD), and with pheomelanin, measured after degradation as 4-amino-3-hydroxyphenylalanine (4-AHP). The method is based on the production of pyrrole-2,3,5-tricarboxylic acid (PTCA) on permanganate oxidation of eumelanin, followed by quantification by liquid chromatography. For 118 urine samples from 10 control subjects, mean urinary excretions of PTCA, 6H5MI2C, 5-S-CD and 4-AHP were 19, 67, 37 and 59 μmol/mol creatinine respectively. In melanoma patients (n = 45), the mean urinary excretions of PTCA, 6H5MI2C, 5-S-CD, and 4-AHP were 91, 926, 4070 and 3530 μmol/mol creatinine respectively. Median level of PTCA in melanoma patients was elevated 2.1-fold compared with control subjects. The degrees of elevation for 6H5MI2C, 5-S-CD, and 4-AHP were 1.8-, 22- and 6.2-fold respectively. Thus, although urinary PTCA is of little clinical value in following the progression of melanoma, urinary 4-AHP appears to be of considerable value in this respect. © 2006 Blackwell Munksgaard.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy