SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ito Susumu) "

Sökning: WFRF:(Ito Susumu)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Deguchi, Shigeru, et al. (författare)
  • Microbial growth at hyperaccelerations up to 403,627 x g
  • 2011
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 108:19, s. 7997-8002
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well known that prokaryotic life can withstand extremes of temperature, pH, pressure, and radiation. Little is known about the proliferation of prokaryotic life under conditions of hyperacceleration attributable to extreme gravity, however. We found that living organisms can be surprisingly proliferative during hyperacceleration. In tests reported here, a variety of microorganisms, including Gram-negative Escherichia coli, Paracoccus denitrificans, and Shewanella amazonensis; Gram-positive Lactobacillus delbrueckii; and eukaryotic Saccharomyces cerevisiae, were cultured while being subjected to hyperaccelerative conditions. We observed and quantified robust cellular growth in these cultures across a wide range of hyperacceleration values. Most notably, the organisms P. denitrificans and E. coli were able to proliferate even at 403, 627 x g. Analysis shows that the small size of prokaryotic cells is essential for their proliferation under conditions of hyperacceleration. Our results indicate that microorganisms cannot only survive during hyperacceleration but can display such robust proliferative behavior that the habitability of extraterrestrial environments must not be limited by gravity.
  •  
2.
  • Dinoto, Achmad, et al. (författare)
  • Population dynamics of Bifidobacterium species in human feces during raffinose administration monitored by fluorescence in situ hybridization-flow cytometry
  • 2006
  • Ingår i: Applied and Environmental Microbiology. - : American Society for Microbiology. - 0099-2240 .- 1098-5336. ; 72:12, s. 7739-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The population dynamics of bifidobacteria in human feces during raffinose administration were investigated at the species level by using fluorescence in situ hybridization (FISH) coupled with flow cytometry (FCM) analysis. Although double-staining FISH-FCM using both fluorescein isothiocyanate (FITC) and indodicarbocyanine (Cy5) as labeling dyes for fecal samples has been reported, the analysis was interfered with by strong autofluorescence at the FITC fluorescence region because of the presence of autofluorescence particles/debris in the fecal samples. We circumvented this problem by using only Cy5 fluorescent dye in the FISH-FCM analysis. Thirteen subjects received 2 g of raffinose twice a day for 4 weeks. Fecal samples were collected, and the bifidobacterial populations were monitored using the established FISH-FCM method. The results showed an increase in bifidobacteria from about 12.5% of total bacteria in the prefeeding period to about 28.7 and 37.2% after the 2-week and 4-week feeding periods, respectively. Bifidobacterium adolescentis, the Bifidobacterium catenulatum group, and Bifidobacterium longum were the major species, in that order, at the prefeeding period, and these bacteria were found to increase nearly in parallel during the raffinose administration. During the feeding periods, indigenous bifidobacterial populations became more diverse, such that minor species in human adults, such as Bifidobacterium breve, Bifidobacterium bifidum, Bifidobacterium dentium, and Bifidobacterium angulatum, proliferated. Four weeks after raffinose administration was stopped, the proportion of each major bifidobacterial species, as well as that of total bifidobacteria, returned to approximately the original values for the prefeeding period, whereas that of each minor species appeared to differ considerably from its original value. To the best of our knowledge, these results provide the first clear demonstration of the population dynamics of indigenous bifidobacteria at the species level in response to raffinose administration.
  •  
3.
  • Mitsueda, Asako, et al. (författare)
  • Development of a Novel Nanoparticle by Dual Modification With the Pluripotential Cell-Penetrating Peptide PepFect6 for Cellular Uptake, Endosomal Escape, and Decondensation of an siRNA Core Complex
  • 2013
  • Ingår i: Biopolymers. - : Wiley. - 0006-3525 .- 1097-0282. ; 100:6, s. 698-704
  • Tidskriftsartikel (refereegranskat)abstract
    • Development of novel devices for effective nucleotide release from nanoparticles is required to improve the functionality of nonviral delivery systems, because decondensation of nucleotide/polycation complexes is considered as a key step for cytoplasmic delivery of nucleotides. Previously, PepFect6 (PF6) comprised chloroquine analog moieties and a stearylated cell-penetrating peptide to facilitate endosomal escape and cellular uptake, respectively, was developed as a device for efficient siRNA delivery. As PF6 contains bulky chloroquine analog moieties, the polyplexes are expected to be loose structure, which facilitates decondensation. In the present study, siRNA was electrostatically condensed by PF6, and the PF6/siRNA complexes were coated with lipid membranes. The surface of the nanoparticles encapsulating the PF6/siRNA core (PF6-NP) was modified with PF6 for endosomal escape (PF6/PF6-NP). The RNAi effect of PF6/PF6-NP was compared with those of stearylated cell-penetrating peptide octaarginine (R8)-modified PF6-NP, R8-modified nanoparticles encapsulating the R8/siRNA core (R8-NP) and PF6-modified R8-NP. Nanoparticles encapsulating the PF6 polyplex, especially PF/PF-NP, showed a significant knockdown effect on luciferase activity of B16-F1 cells stably expressing luciferase. siRNA was widely distributed within the cytoplasm after transfection of the nanoparticles encapsulating the PF6 polyplex, while siRNA encapsulated in the R8-presenting nanoparticles was localized within the nuclei. Thus, the siRNA distribution was dependent on the manner of peptide-modification. In conclusion, we have successfully developed PF6/PF6-NP exhibiting a potent RNAi effect resulting from high cellular uptake, efficient endosomal escape and decondensation of the polyplexes based on the multifunctional cell penetrating peptide PF6. PF6 is therefore a useful pluripotential device for siRNA delivery. © 2013 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 100: 698-704, 2013.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy