SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Iwata So) "

Sökning: WFRF:(Iwata So)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Rebecka, 1988, et al. (författare)
  • Serial femtosecond crystallography structure of cytochrome c oxidase at room temperature.
  • 2017
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytochrome c oxidase catalyses the reduction of molecular oxygen to water while the energy released in this process is used to pump protons across a biological membrane. Although an extremely well-studied biological system, the molecular mechanism of proton pumping by cytochrome c oxidase is still not understood. Here we report a method to produce large quantities of highly diffracting microcrystals of ba 3-type cytochrome c oxidase from Thermus thermophilus suitable for serial femtosecond crystallography. The room-temperature structure of cytochrome c oxidase is solved to 2.3Å resolution from data collected at an X-ray Free Electron Laser. We find overall agreement with earlier X-ray structures solved from diffraction data collected at cryogenic temperature. Previous structures solved from synchrotron radiation data, however, have shown conflicting results regarding the identity of the active-site ligand. Our room-temperature structure, which is free from the effects of radiation damage, reveals that a single-oxygen species in the form of a water molecule or hydroxide ion is bound in the active site. Structural differences between the ba 3-type and aa 3-type cytochrome c oxidases around the proton-loading site are also described.
  •  
2.
  • Asami, Jinta, et al. (författare)
  • Structural basis of hepatitis B virus receptor binding
  • 2024
  • Ingår i: Nature Structural & Molecular Biology. - 1545-9993 .- 1545-9985. ; 31, s. 447-454
  • Tidskriftsartikel (refereegranskat)abstract
    • Hepatitis B virus (HBV), a leading cause of developing hepatocellular carcinoma affecting more than 290 million people worldwide, is an enveloped DNA virus specifically infecting hepatocytes. Myristoylated preS1 domain of the HBV large surface protein binds to the host receptor sodium-taurocholate cotransporting polypeptide (NTCP), a hepatocellular bile acid transporter, to initiate viral entry. Here, we report the cryogenic-electron microscopy structure of the myristoylated preS1 (residues 2–48) peptide bound to human NTCP. The unexpectedly folded N-terminal half of the peptide embeds deeply into the outward-facing tunnel of NTCP, whereas the C-terminal half formed extensive contacts on the extracellular surface. Our findings reveal an unprecedented induced-fit mechanism for establishing high-affinity virus–host attachment and provide a blueprint for the rational design of anti-HBV drugs targeting virus entry. 
  •  
3.
  • Asami, Jinta, et al. (författare)
  • Structure of the bile acid transporter and HBV receptor NTCP
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 606:7916, s. 1021-1026
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic infection with hepatitis B virus (HBV) affects more than 290 million people worldwide, is a major cause of cirrhosis and hepatocellular carcinoma, and results in an estimated 820,000 deaths annually. For HBV infection to be established, a molecular interaction is required between the large glycoproteins of the virus envelope (known as LHBs) and the host entry receptor sodium taurocholate co-transporting polypeptide (NTCP), a sodium-dependent bile acid transporter from the blood to hepatocytes. However, the molecular basis for the virus–transporter interaction is poorly understood. Here we report the cryo-electron microscopy structures of human, bovine and rat NTCPs in the apo state, which reveal the presence of a tunnel across the membrane and a possible transport route for the substrate. Moreover, the cryo-electron microscopy structure of human NTCP in the presence of the myristoylated preS1 domain of LHBs, together with mutation and transport assays, suggest a binding mode in which preS1 and the substrate compete for the extracellular opening of the tunnel in NTCP. Our preS1 domain interaction analysis enables a mechanistic interpretation of naturally occurring HBV-insusceptible mutations in human NTCP. Together, our findings provide a structural framework for HBV recognition and a mechanistic understanding of sodium-dependent bile acid translocation by mammalian NTCPs. 
  •  
4.
  • Bill, Roslyn M., et al. (författare)
  • Overcoming barriers to membrane protein structure determination.
  • 2011
  • Ingår i: Nature biotechnology. - : Springer Science and Business Media LLC. - 1546-1696 .- 1087-0156. ; 29:4, s. 335-40
  • Tidskriftsartikel (refereegranskat)abstract
    • After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new approaches to solving membrane protein structures based on recent technological advances. Rational approaches to overcoming the bottlenecks in the field are urgently required as membrane proteins, which typically comprise ~30% of the proteomes of organisms, are dramatically under-represented in the structural database of the Protein Data Bank.
  •  
5.
  • Drew, David, et al. (författare)
  • GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae.
  • 2008
  • Ingår i: Nat Protoc. - 1750-2799. ; 3:5, s. 784-98
  • Tidskriftsartikel (refereegranskat)abstract
    • It is often difficult to produce eukaryotic membrane proteins in large quantities, which is a major obstacle for analyzing their biochemical and structural features. To date, yeast has been the most successful heterologous overexpression system in producing eukaryotic membrane proteins for high-resolution structural studies. For this reason, we have developed a protocol for rapidly screening and purifying eukaryotic membrane proteins in the yeast Saccharomyces cerevisiae. Using this protocol, in 1 week many genes can be rapidly cloned by homologous recombination into a 2 micro GFP-fusion vector and their overexpression potential determined using whole-cell and in-gel fluorescence. The quality of the overproduced eukaryotic membrane protein-GFP fusions can then be evaluated over several days using confocal microscopy and fluorescence size-exclusion chromatography (FSEC). This protocol also details the purification of targets that pass our quality criteria, and can be scaled up for a large number of eukaryotic membrane proteins in either an academic, structural genomics or commercial environment.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Kubo, Minoru, et al. (författare)
  • Nanosecond pump-probe device for time-resolved serial femtosecond crystallography developed at SACLA
  • 2017
  • Ingår i: Journal of Synchrotron Radiation. - : INT UNION CRYSTALLOGRAPHY. - 0909-0495 .- 1600-5775. ; 24, s. 1086-1091
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers (XFELs) have opened new opportunities for timeresolved X-ray crystallography. Here a nanosecond optical-pump XFEL-probe device developed for time-resolved serial femtosecond crystallography (TRSFX) studies of photo-induced reactions in proteins at the SPring-8 Angstrom Compact free-electron LAser (SACLA) is reported. The optical-fiber-based system is a good choice for a quick setup in a limited beam time and allows pump illumination from two directions to achieve high excitation efficiency of protein microcrystals. Two types of injectors are used: one for extruding highly viscous samples such as lipidic cubic phase (LCP) and the other for pulsed liquid droplets. Under standard sample flow conditions from the viscous-sample injector, delay times from nanoseconds to tens of milliseconds are accessible, typical time scales required to study large protein conformational changes. A first demonstration of a TR-SFX experiment on bacteriorhodopsin in bicelle using a setup with a droplet-type injector is also presented.
  •  
10.
  • Lee, Chiara, et al. (författare)
  • A two-domain elevator mechanism for sodium/proton antiport
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 501:7468, s. 573-577
  • Tidskriftsartikel (refereegranskat)abstract
    • Sodium/proton (Na+/H+) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis1. In humans, their dysfunction has been linked to diseases, such as hypertension, heart failure and epilepsy, and they are well-established drug targets(2). The best understood model system for Na+/H+ antiport is NhaA from Escherichia coli(1,3), for which both electron microscopy and crystal structures are available(4-6). NhaA is made up of two distinct domains: a core domain and a dimerization domain. In the NhaA crystal structure a cavity is located between the two domains, providing access to the ion-binding site from the inward-facing surface of the protein(1,4). Likemany Na+/H+ antiporters, the activity of NhaA is regulated by pH, only becoming active above pH 6.5, at which point a conformational change is thought to occur(7). The only reported NhaA crystal structure so far is of the low pH inactivated form(4). Here we describe the active-state structure of a Na+/H+ antiporter, NapA from Thermus thermophilus, at 3 angstrom resolution, solved from crystals grown at pH7.8. In the NapA structure, the core and dimerization domains are in different positions to those seen in NhaA, and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding(1,8,9) directly, a role supported hereby molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 20 degrees against the dimerization interface. We conclude that despite their fast transport rates of up to 1,500 ions per second(3), Na+/H+ antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy