SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jähnig S. C.) "

Sökning: WFRF:(Jähnig S. C.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Langhans, S. D., et al. (författare)
  • Combining eight research areas to foster the uptake of ecosystem-based management in fresh waters
  • 2019
  • Ingår i: Aquatic conservation. - : Wiley. - 1052-7613 .- 1099-0755. ; 29:7, s. 1161-1173
  • Tidskriftsartikel (refereegranskat)abstract
    • Freshwater ecosystems are under a constant risk of being irreversibly damaged by human pressures that threaten their biodiversity, the sustainability of ecosystem services (ESs), and human well-being. Despite the implementation of various environmental regulations, the challenges of safeguarding freshwater assets have so far not been tackled successfully. A promising way forward to stop the loss of freshwater biodiversity and to sustain freshwater-based ESs is by implementing ecosystem-based management (EBM), an environmental planning and adaptive management approach that jointly considers social and ecological needs. Responsible for considerable recent success in sustainably managing and conserving marine ecosystems, EBM has not yet been championed for fresh waters. A major reason for the delayed uptake of EBM in fresh waters is likely to be its complexity, requiring planners to be familiar with the latest developments in a range of different research areas. EBM would therefore benefit from becoming more tangible to receive attention on the ground. To facilitate uptake, eight core research areas for EBM and their innovations are introduced, and the way in which they feed into the workflow that guides the EBM planning stage is explained. The workflow links biodiversity distributions with ES supply-and-demand modelling and SMART (specific, measurable, attainable, relevant, and timely) target planning, including scenario- and cross-realm perspectives, the prioritization of management alternatives, spatial prioritization of biodiversity conservation and ES areas, and the quantification of uncertainties. Given the extensive resources, time, and technical capacity required to implement the full workflow, a light and an ultralight version of the workflow are also provided. Applied in concert, the eight well-known research areas allow for better planning and operationalizing, and eventually for implementing EBM in freshwater ecosystems. EBM has great potential to increase public acceptance by introducing the consideration of human needs and aspirations into typically biodiversity-driven conservation and management approaches. This will ultimately improve the integrity of freshwater ecosystems. 
  •  
2.
  • Maasri, Alain, et al. (författare)
  • A global agenda for advancing freshwater biodiversity research
  • 2022
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 25:2, s. 255-263
  • Tidskriftsartikel (refereegranskat)abstract
    • Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation. 
  •  
3.
  • Lago, M., et al. (författare)
  • Introducing the H2020 AQUACROSS project : Knowledge, Assessment, and Management for AQUAtic Biodiversity and Ecosystem Services aCROSS EU policies
  • 2019
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 652, s. 320-329
  • Tidskriftsartikel (refereegranskat)abstract
    • The AQUACROSS project was an unprecedented effort to unify policy concepts, knowledge, and management of freshwater, coastal, and marine ecosystems to support the cost-effective achievement of the targets set by the EU Biodiversity Strategy to 2020. AQUACROSS aimed to support EU efforts to enhance the resilience and stop the loss of biodiversity of aquatic ecosystems as well as to ensure the ongoing and future provision of aquatic ecosystem services. The project focused on advancing the knowledge base and application of Ecosystem-Based Management. Through elaboration of eight diverse case studies in freshwater and marine and estuarine aquatic ecosystem across Europe covering a range of environmental management problems including, eutrophication, sustainable fisheries as well as invasive alien species AQUACROSS demonstrated the application of a common framework to establish cost-effective measures and integrated Ecosystem-Based Management practices. AQUACROSS analysed the EU policy framework (i.e. goals, concepts, time frames) for aquatic ecosystems and built on knowledge stemming from different sources (i.e. WISE, BISE, Member State reporting within different policy processes, modelling) to develop innovative management tools, concepts, and business models (i.e. indicators, maps, ecosystem assessments, participatory approaches, mechanisms for promoting the delivery of ecosystem services) for aquatic ecosystems at various scales of space and time and relevant to different ecosystem types.
  •  
4.
  • Mohan, Chinchu, et al. (författare)
  • Poor correlation between large-scale environmental flow violations and freshwater biodiversity : implications for water resource management and the freshwater planetary boundary
  • 2022
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 26:23, s. 6247-6262
  • Tidskriftsartikel (refereegranskat)abstract
    • The freshwater ecosystems around the world are degrading, such that maintaining environmental flow (EF) in river networks is critical to their preservation. The relationship between streamflow alterations (subsequent EF violations2) and the freshwater biodiversity response is well established at the scale of stream reaches or small basins (~< 100 km2). However, it is unclear if this relationship is robust at larger scales, even though there are large-scale initiatives to legalize the EF requirement. Moreover, EFs have been used in assessing a planetary boundary for freshwater. Therefore, this study intends to conduct an exploratory evaluation of the relationship between EF violation and freshwater biodiversity at globally aggregated scales and for freshwater ecoregions. Four EF violation indices (severity, frequency, probability of shifting to a violated state, and probability of staying violated) and seven independent freshwater biodiversity indicators (calculated from observed biota data) were used for correlation analysis. No statistically significant negative relationship between EF violation and freshwater biodiversity was found at global or ecoregion scales. These findings imply the need for a holistic bio-geo-hydro-physical approach in determining the environmental flows. While our results thus suggest that streamflow and EF may not be the only determinant of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods (e.g., including water temperature, water quality, intermittency, connectivity, etc.) or with other biodiversity data or metrics
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy