SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Järås Marcus) "

Sökning: WFRF:(Järås Marcus)

  • Resultat 1-10 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arbajian, Elsa, et al. (författare)
  • In-depth genetic analysis of sclerosing epithelioid fibrosarcoma reveals recurrent genomic alterations and potential treatment targets
  • 2017
  • Ingår i: Clinical Cancer Research. - 1078-0432. ; 23:23, s. 7426-7434
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Sclerosing epithelioid fibrosarcoma (SEF) is a highly aggressive soft tissue sarcoma closely related to low-grade fibromyxoid sarcoma (LGFMS). Some tumors display morphological characteristics of both SEF and LGFMS, so called hybrid SEF/LGFMS. Despite the overlap of gene fusion variants between these two tumor types, SEF is much more aggressive. The present study aimed to further characterize SEF and hybrid SEF/LGFMS genetically in order to better understand the role of the characteristic fusion genes and possible additional genetic alterations in tumorigenesis.EXPERIMENTAL DESIGN: We performed whole exome sequencing, single nucleotide polymorphism (SNP) array analysis, RNA-sequencing (RNA-seq), global gene expression analyses and/or IHC on a series of 13 SEFs and 6 hybrid SEF/LGFMS. We also expressed the FUS-CREB3L2 and EWSR1-CREB3L1 fusion genes conditionally in a fibroblast cell line; these cells were subsequently analyzed by RNA-seq and expression of the CD24 protein was assessed by FACS analysis.RESULTS: The SNP array analysis detected a large number of structural aberrations in SEF and SEF/LGFMS, many of which were recurrent, notably DMD microdeletions. RNA-seq identified FUS-CREM and PAX5-CREB3L1 as alternative fusion genes in one SEF each. CD24 was strongly upregulated, presumably a direct target of the fusion proteins. This was further confirmed by the gene expression analysis and FACS analysis on Tet-On 3G cells expressing EWSR1-CREB3L1.CONCLUSIONS: While gene fusions are the primary tumorigenic events in both SEF and LGFMS, additional genomic changes explain the differences in aggressiveness and clinical outcome between the two types. CD24 and DMD constitute potential therapeutic targets.
  •  
2.
  • Askmyr, Maria, et al. (författare)
  • Modeling chronic myeloid leukemia in immunodeficient mice reveals expansion of aberrant mast cells and accumulation of pre-B cells.
  • 2014
  • Ingår i: Blood Cancer Journal. - : Springer Science and Business Media LLC. - 2044-5385. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that, if not treated, will progress into blast crisis (BC) of either myeloid or B lymphoid phenotype. The BCR-ABL1 fusion gene, encoding a constitutively active tyrosine kinase, is thought to be sufficient to cause chronic phase (CP) CML, whereas additional genetic lesions are needed for progression into CML BC. To generate a humanized CML model, we retrovirally expressed BCR-ABL1 in the cord blood CD34(+) cells and transplanted these into NOD-SCID (non-obese diabetic/severe-combined immunodeficient) interleukin-2-receptor γ-deficient mice. In primary mice, BCR-ABL1 expression induced an inflammatory-like state in the bone marrow and spleen, and mast cells were the only myeloid lineage specifically expanded by BCR-ABL1. Upon secondary transplantation, the pronounced inflammatory phenotype was lost and mainly human mast cells and macrophages were found in the bone marrow. Moreover, a striking block at the pre-B-cell stage was observed in primary mice, resulting in an accumulation of pre-B cells. A similar block in B-cell differentiation could be confirmed in primary cells from CML patients. Hence, this humanized mouse model of CML reveals previously unexplored features of CP CML and should be useful for further studies to understand the disease pathogenesis of CML.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Chapellier, Marion, et al. (författare)
  • Arrayed molecular barcoding identifies TNFSF13 as a positive regulator of acute myeloid leukemia-initiating cells
  • 2019
  • Ingår i: Haematologica. - : Ferrata Storti Foundation (Haematologica). - 1592-8721 .- 0390-6078. ; 104:10, s. 2006-2016
  • Tidskriftsartikel (refereegranskat)abstract
    • Dysregulation of cytokines in the bone marrow microenvironment promotes acute myeloid leukemia cell growth. Due to the complexity and low throughput of in vivo stem-cell based assays, studying the role of cytokines in the bone marrow niche in a screening setting is challenging. Herein, we developed an ex vivo cytokine screen using 11 arrayed molecular barcodes, allowing for a competitive in vivo readout of leukemia-initiating capacity. With this approach, we assessed the effect of 114 murine cytokines on MLL-AF9 acute myeloid leukemia mouse cells and identified the tumor necrosis factor ligand superfamily member 13 (TNFSF13) as a positive regulator of leukemia-initiating cells. By using Tnfsf13-/- recipient mice, we confirmed that TNFSF13 supports leukemia-initiation also under physiological conditions. TNFSF13 was secreted by normal myeloid cells but not by leukemia mouse cells, suggesting that mature myeloid bone marrow cells support leukemia cells by secreting TNFSF13. TNFSF13 supported leukemia cell proliferation in an NF-κB-dependent manner by binding TNFRSF17 and suppressed apoptosis. Moreover, TNFSF13 supported the growth and survival of several human myeloid leukemia cell lines, demonstrating that our findings translate to human disease. Taken together, using arrayed molecular barcoding, we identified a previously unrecognized role of TNFSF13 as a positive regulator of acute myeloid leukemia-initiating cells. The arrayed barcoded screening methodology is not limited to cytokines and leukemia, but can be extended to other types of ex vivo screens, where a multiplexed in vivo read-out of stem cell functionality is needed.
  •  
7.
  • Chapellier, Marion, et al. (författare)
  • Arrayed molecular barcoding of leukemic stem cells
  • 2021
  • Ingår i: Leukemia Stem Cells. - New York, NY : Springer US. - 1064-3745 .- 1940-6029. ; 2185, s. 345-359
  • Bokkapitel (refereegranskat)abstract
    • Functional screens on cancer cells using compound or protein libraries are usually performed in vitro. However, to assess the effects on leukemia stem cells (LSCs) in a screening setting, methodologies that allow for a high-throughput in vivo readout of leukemia-initiating activity are needed. One experimental approach to solve this issue is to genetically label, also referred to as “barcoding,” the leukemia cells in an arrayed format prior to exposing them to separate experimental conditions. The cells can then be pooled and injected into mice for competitive readout of leukemia-initiating activity. Here, we describe a procedure for combining lentiviral arrayed molecular barcoding of leukemia cells with next-generation sequencing, to enable screens on leukemia cells ex vivo followed by an in vivo competitive readout of LSC function. This methodology can also be applied to other model systems in which a competitive in vivo readout of cells is needed.
  •  
8.
  •  
9.
  •  
10.
  • Eriksson, Mia, et al. (författare)
  • Agonistic targeting of TLR1/TLR2 induces p38 MAPK-dependent apoptosis and NFκB-dependent differentiation of AML cells
  • 2017
  • Ingår i: Blood Advances. - : American Society of Hematology. - 2473-9529 .- 2473-9537. ; 1:23, s. 2046-2057
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute myeloid leukemia (AML) is associated with poor survival, and there is a strong need to identify disease vulnerabilities that might reveal new treatment opportunities. Here, we found that Toll-like receptor 1 (TLR1) and TLR2 are upregulated on primary AML CD34+CD38-cells relative to corresponding normal bone marrow cells. Activating the TLR1/TLR2 complex by the agonist Pam3CSK4 inMLL-AF9-driven human AML resulted in induction of apoptosis by p38 MAPK-dependent activation of Caspase 3 and myeloid differentiation in a NFκB-dependent manner. By using murineTrp53 -/- MLL-AF9AML cells, we demonstrate that p53 is dispensable for Pam3CSK4-induced apoptosis and differentiation. Moreover, murineAML1-ETO9a-driven AML cells also were forced into apoptosis and differentiation on TLR1/TLR2 activation, demonstrating that the antileukemic effects observed were not confined toMLL-rearranged AML. We further evaluated whether Pam3CSK4 would exhibit selective antileukemic effects. Ex vivo Pam3CSK4 treatment inhibited murine and human leukemia-initiating cells, whereas murine normal hematopoietic stem and progenitor cells (HSPCs) were relatively less affected. Consistent with these findings, primary human AML cells across several genetic subtypes of AML were more vulnerable for TLR1/TLR2 activation relative to normal human HSPCs. In theMLL-AF9AML mouse model, treatment with Pam3CSK4 provided proof of concept for in vivo therapeutic efficacy. Our results demonstrate that TLR1 and TLR2 are upregulated on primitive AML cells and that agonistic targeting of TLR1/TLR2 forces AML cells into apoptosis by p38 MAPK-dependent activation of Caspase 3, and differentiation by activating NFκB, thus revealing a new putative strategy for therapeutically targeting AML cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36
Typ av publikation
tidskriftsartikel (33)
doktorsavhandling (1)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (33)
populärvet., debatt m.m. (2)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Järås, Marcus (36)
Fioretos, Thoas (15)
Ågerstam, Helena (12)
Rissler, Marianne (12)
Richter, Johan (11)
Lilljebjörn, Henrik (9)
visa fler...
Hansen, Nils (9)
Askmyr, Maria (8)
Landberg, Niklas (7)
Högberg, Carl (7)
Peña-Martínez, Pablo (7)
von Palffy, Sofia (6)
Fan, Xiaolong (6)
Ramakrishnan, Rampra ... (6)
Sandén, Carl (5)
Ebert, Benjamin L. (5)
Ehinger, Mats (5)
Lassen, Carin (5)
Eriksson, Mia (5)
Juliusson, Gunnar (4)
Karlsson, Christine (4)
Chapellier, Marion (4)
Olofsson, Tor (3)
Larsson, Jonas (3)
Al-Shahrour, Fatima (3)
Cammenga, Jörg (3)
Orsmark-Pietras, Chr ... (3)
Paulsson, Kajsa (2)
Hansson, Kristofer (2)
Mulder, Hindrik (2)
Salford, Leif (2)
Hultquist, Anne (2)
Miller, Peter G. (2)
Hansson, Mats (2)
Jakobsson, Johan (2)
Broberg, Karin (2)
Bjerrum, Ole Weis (2)
Widegren, Bengt (2)
Vareman, Niklas (2)
Liu, Jian (2)
Rebetz, Johan (2)
Kristoffersson, Ulf (2)
Root, David E (2)
Sturesson, Helena (2)
Tunlid, Anna (2)
Lazarevic, Vladimir ... (2)
Hansson, Jenny (2)
Dunér, Ingrid (2)
Nordberg, Ana (2)
Wahlberg, Karin E (2)
visa färre...
Lärosäte
Lunds universitet (36)
Göteborgs universitet (1)
Linköpings universitet (1)
Karolinska Institutet (1)
Språk
Engelska (33)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (34)
Naturvetenskap (1)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy