SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jaager K) "

Sökning: WFRF:(Jaager K)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Godakumara, K, et al. (författare)
  • Trophoblast derived extracellular vesicles specifically alter the transcriptome of endometrial cells and may constitute a critical component of embryo-maternal communication
  • 2021
  • Ingår i: Reproductive biology and endocrinology : RB&E. - : Springer Science and Business Media LLC. - 1477-7827. ; 19:1, s. 115-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThe period of time when the embryo and the endometrium undergo significant morphological alterations to facilitate a successful implantation—known as “window of implantation”—is a critical moment in human reproduction. Embryo and the endometrium communicate extensively during this period, and lipid bilayer bound nanoscale extracellular vesicles (EVs) are purported to be integral to this communication.MethodsTo investigate the nature of the EV-mediated embryo-maternal communication, we have supplemented trophoblast analogue spheroid (JAr) derived EVs to an endometrial analogue (RL 95–2) cell layer and characterized the transcriptomic alterations using RNA sequencing. EVs derived from non-trophoblast cells (HEK293) were used as a negative control. The cargo of the EVs were also investigated through mRNA and miRNA sequencing.ResultsTrophoblast spheroid derived EVs induced drastic transcriptomic alterations in the endometrial cells while the non-trophoblast cell derived EVs failed to induce such changes demonstrating functional specificity in terms of EV origin. Through gene set enrichment analysis (GSEA), we found that the response in endometrial cells was focused on extracellular matrix remodelling and G protein-coupled receptors’ signalling, both of which are of known functional relevance to endometrial receptivity. Approximately 9% of genes downregulated in endometrial cells were high-confidence predicted targets of miRNAs detected exclusively in trophoblast analogue-derived EVs, suggesting that only a small proportion of reduced expression in endometrial cells can be attributed directly to gene silencing by miRNAs carried as cargo in the EVs.ConclusionOur study reveals that trophoblast derived EVs have the ability to modify the endometrial gene expression, potentially with functional importance for embryo-maternal communication during implantation, although the exact underlying signalling mechanisms remain to be elucidated.
  •  
2.
  • Khatun, M, et al. (författare)
  • Decidualized endometrial stromal cells present with altered androgen response in PCOS
  • 2021
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1, s. 16287-
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyperandrogenic women with PCOS show disrupted decidualization (DE) and placentation. Dihydrotestosterone (DHT) is reported to enhance DE in non-PCOS endometrial stromal cells (eSCCtrl); however, this has not been assessed in PCOS cells (eSCPCOS). Therefore, we studied the transcriptome profile of non-decidualized (non-DE) and DE eSCs from women with PCOS and Ctrl in response to short-term estradiol (E2) and/or progesterone (P4) exposure with/without (±) DHT. The non-DE eSCs were subjected to E2 ± DHT treatment, whereas the DE (0.5 mM 8-Br-cAMP, 96 h) eSCs were post-treated with E2 and P4 ± DHT, and RNA-sequenced. Validation was performed by immunofluorescence and immunohistochemistry. The results showed that, regardless of treatment, the PCOS and Ctrl samples clustered separately. The comparison of DE vs. non-DE eSCPCOS without DHT revealed PCOS-specific differentially expressed genes (DEGs) involved in mitochondrial function and progesterone signaling. When further adding DHT, we detected altered responses for lysophosphatidic acid (LPA), inflammation, and androgen signaling. Overall, the results highlight an underlying defect in decidualized eSCPCOS, present with or without DHT exposure, and possibly linked to the altered pregnancy outcomes. We also report novel factors which elucidate the mechanisms of endometrial dysfunction in PCOS.
  •  
3.
  •  
4.
  • van Duursen, MBM, et al. (författare)
  • Safeguarding Female Reproductive Health against Endocrine Disrupting Chemicals-The FREIA Project
  • 2020
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 21:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently available test methods are not well-suited for the identification of chemicals that disturb hormonal processes involved in female reproductive development and function. This renders women’s reproductive health at increasing risk globally, which, coupled with increasing incidence rates of reproductive disorders, is of great concern. A woman’s reproductive health is largely established during embryonic and fetal development and subsequently matures during puberty. The endocrine system influences development, maturation, and function of the female reproductive system, thereby making appropriate hormone levels imperative for correct functioning of reproductive processes. It is concerning that the effects of human-made chemicals on the endocrine system and female reproductive health are poorly addressed in regulatory chemical safety assessment, partly because adequate test methods are lacking. Our EU-funded project FREIA aims to address this need by increasing understanding of how endocrine disrupting chemicals (EDCs) can impact female reproductive health. We will use this information to provide better test methods that enable fit-for-purpose chemical regulation and then share our knowledge, promote a sustainable society, and improve the reproductive health of women globally.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy