SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jacobsen Sten Eirik) "

Sökning: WFRF:(Jacobsen Sten Eirik)

  • Resultat 1-10 av 104
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ramsfjell, Veslemoy, et al. (författare)
  • Distinct requirements for optimal growth and In vitro expansion of human CD34(+)CD38(-) bone marrow long-term culture-initiating cells (LTC-IC), extended LTC-IC, and murine in vivo long-term reconstituting stem cells
  • 1999
  • Ingår i: Blood. - 1528-0020. ; 94:12, s. 4093-4102
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, primitive human bone marrow (BM) progenitors supporting hematopoiesis in extended (>60 days) long-term BM cultures were identified. Such extended long-term culture-initiating cells (ELTC-IC) are of the CD34(+)CD38(-) phenotype, are quiescent, and are difficult to recruit into proliferation, implicating ELTC-IC as the most primitive human progenitor cells detectable in vitro. However, it remains to be established whether ELTC-IC can proliferate and potentially expand in response to early acting cytokines. Here, CD34(+)CD38(-) BM ELTC-IC (12-week) were efficiently recruited into proliferation and expanded in vitro in response to early acting cytokines, but conditions for expansion of ELTC-IC activity were distinct from those of traditional (5-week) LTC-IC and murine long-term repopulating cells. Whereas c-kit ligand (KL), interleukin-3 (IL-3), and IL-6 promoted proliferation and maintenance or expansion of murine long-term reconstituting activity and human LTC-IC, they dramatically depleted ELTC-IC activity. In contrast, KL, flt3 ligand (FL), and megakaryocyte growth and development factor (MGDF) (and KL + FL + IL-3) expanded murine long-term reconstituting activity as well as human LTC-IC and ELTC-IC. Expansion of LTC-IC was most optimal after 7 days of culture, whereas optimal expansion of ELTC-IC activity required 12 days, most likely reflecting the delayed recruitment of quiescent CD34(+)CD38(-) progenitors. The need for high concentrations of KL, FL, and MGDF (250 ng/mL each) and serum-free conditions was more critical for expansion of ELTC-IC than of LTC-IC. The distinct requirements for expansion of ELTC-IC activity when compared with traditional LTC-IC suggest that the ELTC-IC could prove more reliable as a predictor for true human stem cell activity after in vitro stem cell manipulation.
  •  
2.
  • Woll, Petter S, et al. (författare)
  • Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells In Vivo.
  • 2014
  • Ingår i: Cancer Cell. - : Elsevier BV. - 1878-3686 .- 1535-6108. ; 25:6, s. 794-808
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence for distinct human cancer stem cells (CSCs) remains contentious and the degree to which different cancer cells contribute to propagating malignancies in patients remains unexplored. In low- to intermediate-risk myelodysplastic syndromes (MDS), we establish the existence of rare multipotent MDS stem cells (MDS-SCs), and their hierarchical relationship to lineage-restricted MDS progenitors. All identified somatically acquired genetic lesions were backtracked to distinct MDS-SCs, establishing their distinct MDS-propagating function in vivo. In isolated del(5q)-MDS, acquisition of del(5q) preceded diverse recurrent driver mutations. Sequential analysis in del(5q)-MDS revealed genetic evolution in MDS-SCs and MDS-progenitors prior to leukemic transformation. These findings provide definitive evidence for rare human MDS-SCs in vivo, with extensive implications for the targeting of the cells required and sufficient for MDS-propagation.
  •  
3.
  • Adolfsson, Jörgen, et al. (författare)
  • Identification of Flt3(+) lympho-myeloid stem cells lacking erythro-megakaryocytic potential: A revised road map for adult blood lineage commitment
  • 2005
  • Ingår i: Cell. - : Elsevier (Cell Press). - 0092-8674 .- 1097-4172. ; 121:2, s. 295-306
  • Tidskriftsartikel (refereegranskat)abstract
    • All blood cell lineages derive from a common hematopoietic stem cell (HSC). The current model implicates that the first lineage commitment step of adult pluripotent HSCs results in a strict separation into common lymphoid and common myeloid precursors. We present evidence for a population of cells which, although sustaining a high proliferative and combined lympho-myeloid differentiation potential, have lost the ability to adopt erythroid and megakaryocyte lineage fates. Cells in the Lin-Sca-1+c-kit+ HSC compartment coexpressing high levels of the tyrosine kinase receptor Flt3 sustain granulocyte, monocyte, and B and T cell potentials but in contrast to Lin-Sca-1(+)ckit(+)Flt3(-) HSCs fail to produce significant erythroid and megakaryocytic progeny. This distinct lineage restriction site is accompanied by downregulation of genes for regulators of erythroid and megakaryocyte development. In agreement with representing a lymphoid primed progenitor, Lin(-)Sca-l(+)c-kit(+)CD34(+)Flt3(+) cells display upregulated IL-7 receptor gene expression. Based on these observations, we propose a revised road map for adult blood lineage development.
  •  
4.
  • Adolfsson, Jörgen, et al. (författare)
  • Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity
  • 2001
  • Ingår i: Immunity. - 1074-7613. ; 15:4, s. 659-669
  • Tidskriftsartikel (refereegranskat)abstract
    • Flt3 has emerged as a potential regulator of hematopoietic stem cells (HSC). Sixty percent of cells in the mouse marrow Lin(-)Sca1(+)c-kit(+) HSC pool expressed flt3. Although single cell cloning showed comparable high proliferative, myeloid, B, and T cell potentials of Lin(-)Sca1(+)c-kit(+)flt3(+) and Lin(-)Sca1(+)c-kit(+)flt3(-) cells, only Lin(-)Sca1(+)c-kit(+)flt3(-) cells supported sustained multilineage reconstitution. In striking contrast, Lin(-)Sca1(+)c-kit(+)flt3(+) cells rapidly and efficiently reconstituted B and T lymphopoiesis, whereas myeloid reconstitution was exclusively short term. Unlike c-kit, activation of flt3 failed to support survival of HSC, whereas only flt3 mediated survival of Lin(-)Sca1(+)c-kit(+)flt3(+) reconstituting cells. Phenotypic and functional analysis support that Lin(-)Sca1(+)c-kit(+)flt3(+) cells are progenitors for the common lymphoid progenitor. Thus, upregulation of flt3 expression on Lin(-)Sca1(+)c-kit(+) HSC cells is accompanied by loss of self-renewal capacity but sustained lymphoid-restricted reconstitution potential.
  •  
5.
  • Ahlenius, Henrik, et al. (författare)
  • Adaptor Protein LNK Is a Negative Regulator of Brain Neural Stem Cell Proliferation after Stroke.
  • 2012
  • Ingår i: The Journal of Neuroscience : the official journal of the Society for Neuroscience. - 1529-2401. ; 32:15, s. 5151-5164
  • Tidskriftsartikel (refereegranskat)abstract
    • Ischemic stroke causes transient increase of neural stem and progenitor cell (NSPC) proliferation in the subventricular zone (SVZ), and migration of newly formed neuroblasts toward the damaged area where they mature to striatal neurons. The molecular mechanisms regulating this plastic response, probably involved in structural reorganization and functional recovery, are poorly understood. The adaptor protein LNK suppresses hematopoietic stem cell self-renewal, but its presence and role in the brain are poorly understood. Here we demonstrate that LNK is expressed in NSPCs in the adult mouse and human SVZ. Lnk(-/-) mice exhibited increased NSPC proliferation after stroke, but not in intact brain or following status epilepticus. Deletion of Lnk caused increased NSPC proliferation while overexpression decreased mitotic activity of these cells in vitro. We found that Lnk expression after stroke increased in SVZ through the transcription factors STAT1/3. LNK attenuated insulin-like growth factor 1 signaling by inhibition of AKT phosphorylation, resulting in reduced NSPC proliferation. Our findings identify LNK as a stroke-specific, endogenous negative regulator of NSPC proliferation, and suggest that LNK signaling is a novel mechanism influencing plastic responses in postischemic brain.
  •  
6.
  • Anderson, Kristina, et al. (författare)
  • Ectopic expression of PAX5 promotes maintenance of biphenotypic myeloid progenitors coexpressing myeloid and B-cell lineage-associated genes
  • 2007
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 109:9, s. 3697-3705
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor PAX5 is a critical regulator of B-cell commitment and development. Although normally not expressed in myeloid progenitors, PAX5 has recently been shown to be frequently expressed in myeloid malignancies and to suppress expression of myeloid differentiation genes, compatible with an effect on the differentiation or maintenance of myeloid progenitors. However, previous studies in which PAX5 was ectopically expressed in normal myeloid progenitors in vivo and in vitro provided conflicting results as to the effect of PAX5 on myeloid development. Herein, we demonstrate that on ectopic expression of PAX5 in bone marrow multipotent stem/progenitor cells, cells with a biphenotypic B220+GR-1/MAC-1+ phenotype are produced. These remain cytokine-dependent, but unlike control-transduced cells they sustain long-term generation of myeloid progenitors in vitro and remain capable of myeloid differentiation. Notably, PAX5+B220+GR-1/MAC- 1+ myeloid progenitors coexpress, at the single-cell level, myeloid genes and otherwise B-cell-specific PAX5 target genes. These findings establish that ectopic expression of PAX5 introduces extensive self-renewal properties in otherwise short-lived myeloid progenitors. Along with the established ectopic expression of PAX5 in acute myeloid leukemia, this motivates a careful investigation of the potential involvement of ectopic PAX5 expression in myeloid and biphenotypic leukemias. © 2007 by The American Society of Hematology.
  •  
7.
  • Anderson, Kristina, et al. (författare)
  • Ectopic expression of PAX5 promotes self renewal of bi-phenotypic myeloid progenitors co-expressing myeloid and B-cell lineage associated genes.
  • 2007
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 109:Jan 11, s. 3697-3705
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor PAX5 is a critical regulator of B-cell commitment and development. Although normally not expressed in myeloid progenitors, PAX5 has recently been shown to be frequently expressed in myeloid malignancies and to suppress expression of myeloid differentiation genes, compatible with an effect on the differentiation or maintenance of myeloid progenitors. However, previous studies in which PAX5 was ectopically expressed in normal myeloid progenitors in vivo and in vitro provided conflicting results as to the effect of PAX5 on myeloid development. Herein, we demonstrate that on ectopic expression of PAX5 in bone marrow multipotent stem/progenitor cells, cells with a biphenotypic B220+GR-1/MAC-1+ phenotype are produced. These remain cytokine-dependent, but unlike control-transduced cells they sustain long-term generation of myeloid progenitors in vitro and remain capable of myeloid differentiation. Notably, PAX5+B220+GR-1/MAC-1+ myeloid progenitors coexpress, at the single-cell level, myeloid genes and otherwise B-cell–specific PAX5 target genes. These findings establish that ectopic expression of PAX5 introduces extensive self-renewal properties in otherwise short-lived myeloid progenitors. Along with the established ectopic expression of PAX5 in acute myeloid leukemia, this motivates a careful investigation of the potential involvement of ectopic PAX5 expression in myeloid and biphenotypic leukemias.
  •  
8.
  • Azzoni, Emanuele, et al. (författare)
  • The onset of circulation triggers a metabolic switch required for endothelial to hematopoietic transition
  • 2021
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 37:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoietic stem cells (HSCs) emerge during development from the vascular wall of the main embryonic arteries. The onset of circulation triggers several processes that provide critical external factors for HSC generation. Nevertheless, it is not fully understood how and when the onset of circulation affects HSC emergence. Here we show that in Ncx1−/− mouse embryos devoid of circulation the HSC lineage develops until the phenotypic pro-HSC stage. However, these cells reside in an abnormal microenvironment, fail to activate the hematopoietic program downstream of Runx1, and are functionally impaired. Single-cell transcriptomics shows that during the endothelial-to-hematopoietic transition, Ncx1−/− cells fail to undergo a glycolysis to oxidative phosphorylation metabolic switch present in wild-type cells. Interestingly, experimental activation of glycolysis results in decreased intraembryonic hematopoiesis. Our results suggest that the onset of circulation triggers metabolic changes that allow HSC generation to proceed.
  •  
9.
  • Bardini, M, et al. (författare)
  • Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement.
  • 2015
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 29:1, s. 38-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Distinct from most other acute lymphoblastic leukemia (ALL), infant ALL with mixed lineage leukemia (MLL) gene rearrangement, the most common leukemia occurring within the first year of life, might arise without the need for cooperating genetic lesions. Through Ig/TCR rearrangement analysis of MLL-AF4+ infant ALL at diagnosis and xenograft leukemias from mice transplanted with the same diagnostic samples, we established that MLL-AF4+ infant ALL is composed of a branching subclonal architecture already at diagnosis, frequently driven by a Ig/TCR-rearranged founder clone. Some MLL-AF4+ clones appear to be largely quiescent at diagnosis but can reactivate and dominate when serially transplanted into immune-deficient mice, whereas other dominant clones at diagnosis can become more quiescent, suggesting a dynamic competition between actively proliferating and quiescent subclones. Investigation of paired diagnostic and relapse samples suggested that relapses often occur from subclones already present but more quiescent at diagnosis. Copy number alterations identified at relapse might contribute to the activation and expansion of previously quiescent subclones. Finally, each of the identified subclones is able to contribute to the diverse phenotypic pool of MLL-AF4+ leukemia-propagating cells. Unraveling of the subclonal architecture and dynamics in MLL+ infant ALL may provide possible explanations for the therapy resistance and frequent relapses observed in this group of poor prognosis ALL.Leukemia accepted article preview online, 06 May 2014; doi:10.1038/leu.2014.154.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 104
Typ av publikation
tidskriftsartikel (97)
konferensbidrag (7)
Typ av innehåll
refereegranskat (104)
Författare/redaktör
Jacobsen, Sten Eirik ... (99)
Buza-Vidas, Natalija (22)
Sitnicka Quinn, Ewa (22)
Bryder, David (21)
Anderson, Kristina (18)
Nerlov, Claus (16)
visa fler...
Jensen, Christina (14)
Månsson, Robert (13)
Luc, Sidinh (13)
Nilsson, Lars (12)
Nygren, Jens Martin, ... (12)
Kharazi, Shabnam (11)
Böiers, Charlotta (9)
Cheng, Min (9)
Sasaki, Yutaka (8)
Qian, Hong (8)
Mead, Adam J (8)
Hellström-Lindberg, ... (7)
Hultquist, Anne (7)
Liuba, Karina (7)
Wittmann, Lilian (7)
Ma, Zhi (7)
Lutteropp, Michael (7)
Ferry, Helen (7)
Woll, Petter S (7)
Johansson, Bertil (6)
Enver, Tariq (6)
Adolfsson, Jörgen (6)
Thorén, Lina (6)
Sigvardsson, Mikael (6)
Åstrand-Grundström, ... (6)
Sigvardsson, Mikael, ... (6)
Castor, Anders (6)
Hokland, Peter (6)
Dybedal, Ingunn (5)
Duarte, Sara (5)
NozadCharoudeh, Hojj ... (5)
Woll, Petter (5)
Bouriez-Jones, Tipha ... (5)
Ekblom, Marja (5)
Yang, Liping (4)
Ahlenius, Henrik (4)
Sandberg, Rickard (4)
Strömbeck, Bodil (4)
Kjeldsen, Lars (4)
Breitbach, Martin (4)
Fleischmann, Bernd K (4)
Macaulay, Iain C (4)
Atkinson, Deborah (4)
Giustacchini, Alice (4)
visa färre...
Lärosäte
Lunds universitet (98)
Karolinska Institutet (27)
Linköpings universitet (14)
Högskolan i Halmstad (12)
Uppsala universitet (5)
Umeå universitet (3)
visa fler...
Kungliga Tekniska Högskolan (2)
Örebro universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (103)
Norska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (95)
Naturvetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy