SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jacobsson T. Jesper) "

Sökning: WFRF:(Jacobsson T. Jesper)

  • Resultat 1-10 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jacobsson, Jesper, 1984-, et al. (författare)
  • An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles
  • 2022
  • Ingår i: Nature Energy. - : Springer Nature. - 2058-7546. ; 7:1, s. 107-115
  • Tidskriftsartikel (refereegranskat)abstract
    • Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences. 
  •  
2.
  • Almora, Osbel, et al. (författare)
  • Device Performance of Emerging Photovoltaic Materials (Version 1)
  • 2020
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6832 .- 1614-6840. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging photovoltaics (PVs) focus on a variety of applications complementing large scale electricity generation. Organic, dye-sensitized, and some perovskite solar cells are considered in building integration, greenhouses, wearable, and indoor applications, thereby motivating research on flexible, transparent, semitransparent, and multi-junction PVs. Nevertheless, it can be very time consuming to find or develop an up-to-date overview of the state-of-the-art performance for these systems and applications. Two important resources for recording research cells efficiencies are the National Renewable Energy Laboratory chart and the efficiency tables compiled biannually by Martin Green and colleagues. Both publications provide an effective coverage over the established technologies, bridging research and industry. An alternative approach is proposed here summarizing the best reports in the diverse research subjects for emerging PVs. Best performance parameters are provided as a function of the photovoltaic bandgap energy for each technology and application, and are put into perspective using, e.g., the Shockley–Queisser limit. In all cases, the reported data correspond to published and/or properly described certified results, with enough details provided for prospective data reproduction. Additionally, the stability test energy yield is included as an analysis parameter among state-of-the-art emerging PVs.
  •  
3.
  • Fondell, Mattis, et al. (författare)
  • Optical quantum confinement in low dimensional hematite
  • 2014
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488. ; 2:10, s. 3352-3363
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematite is considered to be a promising material for various applications, including for example photoelectrochemical cells for solar hydrogen production. Due to limitations in the charge transport properties hematite needs to be in the form of low-dimensional particles or thin films in several of these applications. This may however affect the optical properties, introducing additional complications for efficient design of photo-active devices. In this paper the optical absorption is analyzed in detail as a function of film thickness for 35 thin films of hematite ranging between 2 and 70 nm. Hematite was deposited by atomic layer deposition on FTO-substrates using Fe(CO)(5) and O-2 as precursors. It was found that for film thicknesses below 20 nm the optical properties are severely affected as a consequence of quantum confinement. One of the more marked effects is a blue shift of up to 0.3 eV for thinner films of both the indirect and direct transitions, as well as a 0.2 eV shift of the absorption maximum. The data show a difference in quantum confinement for the indirect and the direct transitions, where the probability for the indirect transition decreases markedly and essentially disappears for the thinnest films. Raman measurements showed no peak shift or change in relative intensity for vibrations for the thinnest films indicating that the decrease in indirect transition probability could not be assigned to depression of any specific phonon but instead seems to be a consequence of isotropic phonon confinement. The onset of the indirect transition is found at 1.75 eV for the thickest films and shifted to 2.0 eV for the thinner films. Two direct transitions are found at 2.15 eV and 2.45 eV, which are blue shifted 0.3 and 0.45 eV respectively, when decreasing the film thickness from 20 to 4 nm. Low dimensional hematite, with dimensions small enough for efficient charge transport, thus has a substantially lower absorption in the visible region than expected from bulk values. This knowledge of the intrinsic optical behavior of low dimensional hematite will be of importance in the design of efficient photo-active devices.
  •  
4.
  • Hultqvist, Adam, et al. (författare)
  • SnOx Atomic Layer Deposition on Bare Perovskite-An Investigation of Initial Growth Dynamics, Interface Chemistry, and Solar Cell Performance
  • 2021
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 4:1, s. 510-522
  • Tidskriftsartikel (refereegranskat)abstract
    • High-end organic-inorganic lead halide perovskite semitransparent p-i-n solar cells for tandem applications use a phenyl-C-61-butyric acid methyl ester (PCBM)/atomic layer deposition (ALD)-SnOx electron transport layer stack. Omitting the PCBM would be preferred for manufacturing, but has in previous studies on (FA,MA)Pb(Br,I)(3) and (Cs,FA)Pb(Br,I)(3) and in this study on Cs(0)(.0)(5)FA(0.79)MA(0.16)PbBr(0.51)I(2.49) (perovskite) led to poor solar cell performance because of a bias-dependent light-generated current. A direct ALD-SnOx exposure was therefore suggested to form a nonideal perovskite/SnOx interface that acts as a transport barrier for the light-generated current. To further investigate the interface formation during the initial ALD SnOx growth on the perovskite, the mass dynamics of monitor crystals coated by partial p-i-n solar cell stacks were recorded in situ prior to and during the ALD using a quartz crystal microbalance. Two major finds were made. A mass loss was observed prior to ALD for growth temperatures above 60 degrees C, suggesting the decomposition of the perovskite. In addition, a mostly irreversible mass gain was observed during the first exposure to the Sn precursor tetrakis(dimethylamino)tin(IV) that is independent of growth temperature and that disrupts the mass gain of the following 20-50 ALD cycles. The chemical environments of the buried interface were analyzed by soft and hard X-ray photoelectron spectroscopy for a sample with 50 ALD cycles of SnOx on the perovskite. Although measurements on the perovskite bulk below and the SnOx film above did not show chemical changes, additional chemical states for Pb, Br, and N as well as a decrease in the amount of I were observed in the interfacial region. From the analysis, these states and not the heating of the perovskite were concluded to be the cause of the barrier. This strongly suggests that the detrimental effects can be avoided by controlling the interfacial design.
  •  
5.
  • Jacobsson, Daniel, et al. (författare)
  • Particle-assisted GaxIn1-xP nanowire growth for designed bandgap structures
  • 2012
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 23:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-tapered vertically straight GaxIn1-xP nanowires were grown in a compositional range from Ga0.2In0.8P to pure GaP in particle-assisted mode by controlling the trimethylindium, trimethylgallium and hydrogen chloride flows in metal-organic vapor phase epitaxy. X-ray energy dispersive spectroscopy in transmission electron microscopy revealed homogeneous radial material composition in single nanowires, whereas variations in the material composition were found along the nanowires. High-resolution x-ray diffraction indicates a variation of the material composition on the order of about 19% measuring an entire sample area, i.e., including edge effects during growth. The non-capped nanowires emit room temperature photoluminescence strongly in the energy range of 1.43-2.16 eV, correlated with the bandgap expected from the material composition.
  •  
6.
  • Jacobsson, Jesper T., et al. (författare)
  • A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency
  • 2013
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry (RSC). - 1754-5692 .- 1754-5706. ; 6:12, s. 3676-3683
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficient production of hydrogen from solar energy is anticipated to be an important component in a future sustainable post-carbon energy system. Here we demonstrate that series interconnected absorbers in a PV-electrolysis configuration based on the compound semiconductor CIGS, CuInxGa1-xSe2, are a highly interesting concept for solar water splitting applications. The band gap energy of CIGS can be adjusted to a value close to optimum for efficient absorption of the solar spectrum, but is too low to drive overall water splitting. Therefore we connect three cells in series, into a monolithic device, which provides sufficient driving force for the full reaction. Integrated with a catalyst this forms a stable PV/photo-electrochemical device, which when immersed in water reaches over 10% solar-to-hydrogen efficiency for unassisted water splitting. The results show that series interconnected device concepts, which enable use of a substantial part of the solar spectrum, provide a simple route towards highly efficient water splitting and could be used also for other solar absorbers with similar electro-optical properties. We discuss how the efficiency could be increased for this particular device, as well as the general applicability of the concepts used in this work. We also briefly discuss advantages and disadvantages of photo-electrochemical cells in relation to PV-electrolysis with respect to our results.
  •  
7.
  • Jacobsson, Jesper T, et al. (författare)
  • A size dependent discontinuous decay rate for the exciton emission in ZnO quantum dots
  • 2014
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - 1463-9076 .- 1463-9084. ; 16:27, s. 13849-13857
  • Tidskriftsartikel (refereegranskat)abstract
    • The time resolved UV-fluorescence in ZnO quantum dots has been investigated using femtosecond laser spectroscopy. The measurements were performed as a function of particle size for particles between 3 and 7 nm in diameter, which are in the quantum confined regime. A red shift in the fluorescence maximum is seen while increasing the particle size, which correlates with the shift in band gap due to quantum confinement. The energy difference between the UV-fluorescence and the band gap does, however, increase for the smaller particles. For 3.7 nm particles the fluorescence energy is 100 meV smaller than the band gap energy, whereas it is only 20 meV smaller for the largest particles. This indicates a stabilization of the excitons in the smallest particles. The lifetime of the UV fluorescence is in the picosecond time scale and interestingly, it is discontinuous with respect to particle size. For the smallest particles, the exciton emission life time reaches 30 ps, which is three times longer than that for the largest particles. This demonstrates a transition between two different mechanisms for the UV-fluorescence. We suggest that this is an effect of surface trapping and stabilization of the excitons occurring in the smallest particles but not in the larger ones. We also discuss the time scale limit for slowed hot carrier dynamics in ensembles of quantum confined ZnO particles.
  •  
8.
  • Jacobsson, Jesper T., et al. (författare)
  • CuInxGa1-xSe2 as an efficient photocathode for solar hydrogen generation
  • 2013
  • Ingår i: International journal of hydrogen energy. - : Elsevier BV. - 0360-3199 .- 1879-3487. ; 38:35, s. 15027-15035
  • Tidskriftsartikel (refereegranskat)abstract
    • Utilizing the energy in the sun to efficiently split water into hydrogen and oxygen can have a huge beneficial impact on a future post-carbon energy system. There is still, however, some way to go before this concept will be fully competitive. At the heart of the problem is finding and designing materials that can drive the photoreaction in an efficient and stable way. In this work we demonstrate how CIGS (CuInxGa1-xSe2), can be used for photo reduction of water into hydrogen. CIGS, which is a proven good solar cell material, does not in itself have the appropriate energetics to drive the reaction to any larger extent. Here we show that by utilizing a solid state pn-junction for charge separation and a catalyst deposited on the surface, the efficiency is significantly improved and photocurrents of 6 mA/cm(2) are demonstrated for the reduction reaction in the configuration of a photo-electrochemical cell. The stability of CIGS in water under illumination turns out to be a problem. In our present set-up, we demonstrate that separation between the charge carrier generation, which takes place in the solar cell, from the catalysis, which takes place in the electrolyte leads to improved stability, while keeping the essential functions of the processes. By incorporating appropriate charge separation layers and optimizing the catalytic conditions at the surface of the electrodes, photocurrents in excess of 20 mA/cm2 are reached for the reduction half reaction, demonstrating how essentially the full potential of GIGS as an efficient absorber material can be utilized in photocatalytic reduction of water into hydrogen.
  •  
9.
  • Jacobsson, T. Jesper, 1984-, et al. (författare)
  • 2-Terminal CIGS-perovskite tandem cells : A layer by layer exploration
  • 2020
  • Ingår i: Solar Energy. - : Elsevier BV. - 0038-092X .- 1471-1257. ; 207, s. 270-288
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper focuses on the development of 2-terminal CIGS-perovskite tandem solar cells by exploring a range of stack sequences and synthetic procedures for depositing the associated layers. In the end, we converged at a stack sequence composed of SLG/Mo/CIGS/CdS/i-ZnO/ZnO:Al/NiO/PTAA/Perovskite/LiF/PCBM/SnO2/ITO. With this architecture, we reached performances only about 1% lower than the corresponding 4-terminal tandem cells, thus demonstrating functional interconnects between the two sub-cells while grown monolithically on top of each other. We go through the stack, layer-by-layer, discussing their deposition and the results, from which we can conclude what works, what does not work, and what potentially could work after additional modifications. The challenges for a successful 2-terminal tandem device include: how to deal with, or decrease, the surface roughness of the CIGS-stack, how to obtain uniform coverage of the layers between the CIGS and the perovskite while also obtaining a benign interface chemistry, and how to tune the band gaps of both the CIGS and the perovskite to obtain good optical matching. The investigation was based on CIGS with a power conversion efficiency around 14%, and perovskites with an efficiency around 12%, resulting in 2-terminal tandem cells with efficiencies of 15–16%. The results indicate that by using higher performing CIGS and perovskite sub-cells, it should be possible to manufacture highly efficient 2-terminal CIGS-perovskite tandem devices by using the protocols, principles, and procedures developed and discussed in this paper.
  •  
10.
  • Jacobsson, T. Jesper, et al. (författare)
  • A Spectroelectrochemical Method for Locating Fluorescence Trap States in Nanoparticles and Quantum Dots
  • 2013
  • Ingår i: The Journal of Physical Chemistry C. - 1932-7447 .- 1932-7455. ; 117:10, s. 5497-5504
  • Tidskriftsartikel (refereegranskat)abstract
    • We here devise an electrochemical method for determining the absolute energetic position of trap levels involved in fluorescence. The method utilizes potentiostatic control of the Fermi level in the material, and thereby also the electronic population of the energy states involved in the fluorescence. The method is especially useful for nanoparticle semiconductor electrodes. Here we exemplify the method by determining the position of the trap levels involved in the green fluorescence in thin films of ZnO quantum dots. The exact mechanism and the absolute positions of these states have been debated in the literature. Here we show that the visible fluorescence is caused by a transition from energy levels slightly below the conduction band edge to a deep trap within the band gap. We further pinpoint the location of the upper trap level to be at 0.35 +/- 0.03 eV below the conduction band edge. Particles between 5 and 8 nm in diameter have been analyzed, which is in the quantum confined region of ZnO. We also show that the position of the upper trap level shifts with the size of the quantum dots in the same way as the conduction band.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy