SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jacobsson T. Jesper 1984 ) "

Sökning: WFRF:(Jacobsson T. Jesper 1984 )

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jacobsson, Jesper, 1984-, et al. (författare)
  • An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles
  • 2022
  • Ingår i: Nature Energy. - : Springer Nature. - 2058-7546. ; 7:1, s. 107-115
  • Tidskriftsartikel (refereegranskat)abstract
    • Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences. 
  •  
2.
  • Hultqvist, Adam, et al. (författare)
  • SnOx Atomic Layer Deposition on Bare Perovskite-An Investigation of Initial Growth Dynamics, Interface Chemistry, and Solar Cell Performance
  • 2021
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 4:1, s. 510-522
  • Tidskriftsartikel (refereegranskat)abstract
    • High-end organic-inorganic lead halide perovskite semitransparent p-i-n solar cells for tandem applications use a phenyl-C-61-butyric acid methyl ester (PCBM)/atomic layer deposition (ALD)-SnOx electron transport layer stack. Omitting the PCBM would be preferred for manufacturing, but has in previous studies on (FA,MA)Pb(Br,I)(3) and (Cs,FA)Pb(Br,I)(3) and in this study on Cs(0)(.0)(5)FA(0.79)MA(0.16)PbBr(0.51)I(2.49) (perovskite) led to poor solar cell performance because of a bias-dependent light-generated current. A direct ALD-SnOx exposure was therefore suggested to form a nonideal perovskite/SnOx interface that acts as a transport barrier for the light-generated current. To further investigate the interface formation during the initial ALD SnOx growth on the perovskite, the mass dynamics of monitor crystals coated by partial p-i-n solar cell stacks were recorded in situ prior to and during the ALD using a quartz crystal microbalance. Two major finds were made. A mass loss was observed prior to ALD for growth temperatures above 60 degrees C, suggesting the decomposition of the perovskite. In addition, a mostly irreversible mass gain was observed during the first exposure to the Sn precursor tetrakis(dimethylamino)tin(IV) that is independent of growth temperature and that disrupts the mass gain of the following 20-50 ALD cycles. The chemical environments of the buried interface were analyzed by soft and hard X-ray photoelectron spectroscopy for a sample with 50 ALD cycles of SnOx on the perovskite. Although measurements on the perovskite bulk below and the SnOx film above did not show chemical changes, additional chemical states for Pb, Br, and N as well as a decrease in the amount of I were observed in the interfacial region. From the analysis, these states and not the heating of the perovskite were concluded to be the cause of the barrier. This strongly suggests that the detrimental effects can be avoided by controlling the interfacial design.
  •  
3.
  • Jacobsson, T. Jesper, 1984-, et al. (författare)
  • 2-Terminal CIGS-perovskite tandem cells : A layer by layer exploration
  • 2020
  • Ingår i: Solar Energy. - : Elsevier BV. - 0038-092X .- 1471-1257. ; 207, s. 270-288
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper focuses on the development of 2-terminal CIGS-perovskite tandem solar cells by exploring a range of stack sequences and synthetic procedures for depositing the associated layers. In the end, we converged at a stack sequence composed of SLG/Mo/CIGS/CdS/i-ZnO/ZnO:Al/NiO/PTAA/Perovskite/LiF/PCBM/SnO2/ITO. With this architecture, we reached performances only about 1% lower than the corresponding 4-terminal tandem cells, thus demonstrating functional interconnects between the two sub-cells while grown monolithically on top of each other. We go through the stack, layer-by-layer, discussing their deposition and the results, from which we can conclude what works, what does not work, and what potentially could work after additional modifications. The challenges for a successful 2-terminal tandem device include: how to deal with, or decrease, the surface roughness of the CIGS-stack, how to obtain uniform coverage of the layers between the CIGS and the perovskite while also obtaining a benign interface chemistry, and how to tune the band gaps of both the CIGS and the perovskite to obtain good optical matching. The investigation was based on CIGS with a power conversion efficiency around 14%, and perovskites with an efficiency around 12%, resulting in 2-terminal tandem cells with efficiencies of 15–16%. The results indicate that by using higher performing CIGS and perovskite sub-cells, it should be possible to manufacture highly efficient 2-terminal CIGS-perovskite tandem devices by using the protocols, principles, and procedures developed and discussed in this paper.
  •  
4.
  • Jacobsson, T. Jesper, 1984- (författare)
  • Highly Efficient CIGS Based Devices for Solar Hydrogen Production and Size Dependent Properties of ZnO Quantum Dots
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Materials and device concepts for renewable solar hydrogen production, and size dependent properties of ZnO quantum dots are the two main themes of this thesis.ZnO particles with diameters less than 10 nm, which are small enough for electronic quantum confinement, were synthesized by hydrolysis in alkaline zinc acetate solutions. Properties investigated include: the band gap - particle size relation, phonon quantum confinement, visible and UV-fluorescence as well as photocatalytic performance. In order to determine the absolute energetic position of the band edges and the position of trap levels involved in the visible fluorescence, methods based on combining linear sweep voltammetry and optical measurements were developed.The large band gap of ZnO prevents absorption of visible light, and in order to construct devices capable of utilizing a larger part of the solar spectrum, other materials were also investigated, like hematite , Fe2O3, and CIGS, CuIn1-xGaxSe2.The optical properties of hematite were investigated as a function of film thickness on films deposited by ALD. For films thinner than 20 nm, a blue shift was observed for both the absorption maximum, the indirect band gap as well as for the direct transitions. The probability for the indirect transition decreased substantially for thinner films due to a suppressed photon/phonon coupling. These effects decrease the visible absorption for films thin enough for effective charge transport in photocatalytic applications.CIGS was demonstrated to be a highly interesting material for solar hydrogen production. CIGS based photocathodes demonstrated high photocurrents for the hydrogen evolution half reaction. The electrode stability was problematic, but was solved by introducing a modular approach based on spatial separation of the basic functionalities in the device. To construct devices capable of driving the full reaction, the possibility to use cells interconnected in series as an alternative to tandem devices were investigated. A stable, monolithic device based on three CIGS cells interconnected in series, reaching beyond 10 % STH-efficiency, was finally demonstrated. With experimental support from the CIGS-devices, the entire process of solar hydrogen production was reviewed with respect to the underlying physical processes, with special focus on the similarities and differences between various device concepts.
  •  
5.
  • Pazoki, Meysam, et al. (författare)
  • Photon Energy-Dependent Hysteresis Effects in Lead Halide Perovskite Materials
  • 2017
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 121:47, s. 26180-26187
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead halide perovskites have a range of spectacular properties and interesting phenomena and are a serious candidate for the next generation of photovoltaics with high efficiencies and low fabrication costs. An interesting phenomenon is the anomalous hysteresis often seen in current-voltage scans, which complicates accurate performance measurements but has also been explored to obtain a more comprehensive understanding of the device physics. Herein, we demonstrate a wavelength and illumination intensity dependency of the hysteresis in state-of-the-art perovskite solar cells with 18% power conversion efficiency (PCE), which gives new insights into ion migration. The perovskite devices show lower hysteresis under illumination with near band edge (red) wavelengths compared to more energetic (blue) excitation. This can be rationalized with thermalization-assisted ion movement or thermalization-assisted vacancy generation. These explanations are supported by the dependency of the photovoltage decay with illumination time and excitation wavelength, as well as by impedance spectroscopy. The suggested mechanism is that high-energy photons create hot charge carriers that either through thermalization can create additional vacancies or by release of more energetic phonons play a role in overcoming the activation energy for ion movement. The excitation wavelength dependency of the hysteresis presented here gives valuable insights into the photophysics of the lead halide perovskite solar cells.
  •  
6.
  • Philippe, Bertrand, Dr. 1986-, et al. (författare)
  • Valence Level Character in a Mixed Perovskite Material and Determination of the Valence Band Maximum from Photoelectron Spectroscopy : Variation with Photon Energy
  • 2017
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 121:48, s. 26655-26666
  • Tidskriftsartikel (refereegranskat)abstract
    • A better understanding of the electronic structure of perovskite materials used in photovoltaic devices is essential for their development and optimization. In this investigation, synchrotron-based photoelectron spectroscopy (PES) was used to experimentally delineate the character and energy position of the valence band structures of a mixed perovskite. The valence band was measured using PES with photon energies ranging from ultraviolet photoelectron spectroscopy (21.2 eV) to hard X-rays (up to 4000 eV), and by taking the variation of the photoionization cross sections into account, we could experimentally determine the inorganic and organic contributions. The experiments were compared to theoretical calculations to further distinguish the role of the different anions in the electronic structure. This work also includes a thorough study of the valence band maximum and its position in relation to the Fermi level, which is crucial for the design and optimization of complete solar cells and their functional properties.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy