SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jaeken Jaak) "

Search: WFRF:(Jaeken Jaak)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bengtson, Per, et al. (author)
  • Serum transferrin carrying the xeno-tetrasaccharide NeuAc-Gal-GlcNAc2 is a biomarker of ALG1-CDG.
  • 2016
  • In: Journal of Inherited Metabolic Disease. - : Wiley. - 0141-8955 .- 1573-2665. ; 39:1, s. 107-114
  • Journal article (peer-reviewed)abstract
    • ALG1-CDG (formerly CDG-Ik) is a subtype of congenital disorders of glycosylation (CDG) where the genetic defect disrupts the synthesis of the lipid-linked oligosaccharide precursor required for N-glycosylation. The initial step in the investigation for these disorders involves the demonstration of hypoglycosylated serum transferrin (TF). There are no specific biomarkers of this CDG subtype known to date. An LC/MS approach was used to analyze sera from patients with ALG1-CDG, PMM2-CDG, suspected CDG, and individuals with alcohol abuse. We show mass spectrometric data combined with data from enzymatic digestions that suggest the presence of a tetrasaccharide consisting of two N-acetylglucosamines, one galactose, and one sialic acid, appearing on serum TF, is a biomarker of this particular CDG subtype. This is the first time analysis of serum TF can suggest a specific CDG type I subtype and we suggest this tetrasaccharide be used in the clinic to guide the ALG1-CDG diagnostic process.
  •  
2.
  • Cassiman, David, et al. (author)
  • A novel mutation causing mild, atypical fumarylacetoacetase deficiency (Tyrosinemia type I): a case report.
  • 2009
  • In: Orphanet journal of rare diseases. - : Springer Science and Business Media LLC. - 1750-1172. ; 4
  • Journal article (peer-reviewed)abstract
    • A male patient, born to unrelated Belgian parents, presented at 4 months with epistaxis, haematemesis and haematochezia. On physical examination he presented petechiae and haematomas, and a slightly enlarged liver. Serum transaminases were elevated to 5-10 times upper limit of normal, alkaline phosphatases were 1685 U/L (<720), total bilirubin was 2.53 mg/dl (<1.0), ammonaemia 69 microM (<32), prothrombin time less than 10%, thromboplastin time >180 s (<60) and alpha-fetoprotein 29723 microg/L (<186). Plasma tyrosine (651 microM) and methionine (1032 microM) were strongly increased. In urine, tyrosine metabolites and 4-oxo-6-hydroxyheptanoic acid were increased, but succinylacetone and succinylacetoacetate--pathognomonic for tyrosinemia type I--were repeatedly undetectable. Delta-aminolevulinic acid was normal, which is consistent with the absence of succinylacetone. Abdominal ultrasound and brain CT were normal.Fumarylacetoacetase (FAH) protein and activity in cultured fibroblasts and liver tissue were decreased but not absent. 4-hydroxyphenylpyruvate dioxygenase activity in liver was normal, which is atypical for tyrosinemia type I. A novel mutation was found in the FAH gene: c.103G>A (Ala35Thr). In vitro expression studies showed this mutation results in a strongly decreased FAH protein expression.Dietary treatment with phenylalanine and tyrosine restriction was initiated at 4 months, leading to complete clinical and biochemical normalisation. The patient, currently aged 12 years, shows a normal physical and psychomotor development.This is the first report of mild tyrosinemia type I disease caused by an Ala35Thr mutation in the FAH gene, presenting atypically without increase of the diagnostically important toxic metabolites succinylacetone and succinylacetoacetate.
  •  
3.
  • Ng, Bobby G, et al. (author)
  • ALG1-CDG: Clinical and Molecular Characterization of 39 Unreported Patients.
  • 2016
  • In: Human Mutation. - : Hindawi Limited. - 1059-7794.
  • Journal article (peer-reviewed)abstract
    • Congenital disorders of glycosylation (CDG) arise from pathogenic mutations in over one hundred genes leading to impaired protein or lipid glycosylation. ALG1 encodes a β1,4 mannosyltransferase that catalyzes the addition of the first of nine mannose moieties to form a dolichol-lipid linked oligosaccharide intermediate (DLO) required for proper N-linked glycosylation. ALG1 mutations cause a rare autosomal recessive disorder termed ALG1-CDG. To date thirteen mutations in eighteen patients from fourteen families have been described with varying degrees of clinical severity. We identified and characterized thirty-nine previously unreported cases of ALG1-CDG from thirty-two families and add twenty-six new mutations. Pathogenicity of each mutation was confirmed based on its inability to rescue impaired growth or hypoglycosylation of a standard biomarker in an alg1-deficient yeast strain. Using this approach we could not establish a rank order comparison of biomarker glycosylation and patient phenotype, but we identified mutations with a lethal outcome in the first two years of life. The recently identified protein-linked xeno-tetrasaccharide biomarker, NeuAc-Gal-GlcNAc2 , was seen in all twenty-seven patients tested. Our study triples the number of known patients and expands the molecular and clinical correlates of this disorder. This article is protected by copyright. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view