SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jafri Syed Hassan Mujtaba 1979 ) "

Sökning: WFRF:(Jafri Syed Hassan Mujtaba 1979 )

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wani, Ishtiaq Hassan, 1985-, et al. (författare)
  • A sub 20 nm metal-conjugated molecule junction acting as a nitrogen dioxide sensor
  • 2019
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 11:14, s. 6571-6575
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction of a gas molecule with a sensing material causes the highest change in the electronic structure of the latter, when this material consists of only a few atoms. If the sensing material consists of a short, conductive molecule, the sensing action can be furthermore probed by connecting such molecules to nanoelectrodes. Here, we report that NO2 molecules that adhere to 4,4'-biphenyldithiol (BPDT) bound to Au surfaces lead to a change of the electrical transmission of the BPDT. The related device shows reproducible, stable measurements and is so far the smallest (<20 nm) gas sensor. It demonstrates modulation of charge transport through molecules upon exposure to nitrogen dioxide down to concentrations of 55 ppb. We have evaluated several devices and exposure conditions and obtained a close to linear dependence of the sensor response on the gas concentration.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Jafri, Syed Hassan Mujtaba, 1979-, et al. (författare)
  • Nanomolecular electronic devices based on AuNP molecule nanoelectrodes using molecular place-exchange process
  • 2020
  • Ingår i: Nanotechnology. - : IOP PUBLISHING LTD. - 0957-4484 .- 1361-6528. ; 31:22
  • Tidskriftsartikel (refereegranskat)abstract
    • The implementation of electronics applications based on molecular electronics devices is hampered by the difficulty of placing a single or a few molecules with application-specific electronic properties in between metallic nanocontacts. Here, we present a novel method to fabricate 20 nm sized nanomolecular electronic devices (nanoMoED) using a molecular place-exchange process of nonconductive short alkyl thiolates with various short chain conductive oligomers. After the successful place-exchange with short-chain conjugated oligomers in the nanoMoED devices, a change in device resistance of up to four orders of magnitude for 4,4 '-biphenyldithiol (BPDT), and up to three orders of magnitude for oligo phenylene-ethynylene (OPE), were observed. The place-exchange process in nanoMoEDs are verified by measuring changes in device resistance during repetitive place-exchange processes between conductive and nonconductive molecules and surface-enhanced Raman spectroscopy. This opens vast possibilities for the fabrication and application of nanoMoED devices with a large variety of molecules.
  •  
6.
  • Li, Hu, 1986-, et al. (författare)
  • Enhanced gas sensing performance of graphene/ZnS-CdS hetero-nanowires gas sensor synthesized by Langmuir-Blodgett self-assembly method
  • 2017
  • Ingår i: Journal of Physics Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 922
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene is a promising material in the field of solid-state gas sensors due to the unique two-dimensional structure. Here, we have shown by fabricating graphene/ZnS-CdS hetero-nanowire structure, the gas sensor sensitivity has a two-fold increase to 20% under 15 ppm gaseous concentration compared to a 10% response in pristine graphene. Spectroscopy and microscopy analysis indicate that the semi-conducting ZnS-CdS hetero-nanowires are 2 nm wide and densely packed on top of graphene. By combining UV illumination, the device approaches a fast response/recovery and high gas sensitivity, thus has a potential to be used in a detection of wide range of gases. 
  •  
7.
  • Sher, Omer, et al. (författare)
  • Analysis of molecular ligand functionalization process in nano-molecular electronic devices containing densely packed nano-particle functionalization shells
  • 2022
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 33:25
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular electronic devices based on few and single-molecules have the advantage that the electronic signature of the device is directly dependent on the electronic structure of the molecules as well as of the electrode-molecule junction. In this work, we use a two-step approach to synthesise functionalized nanomolecular electronic devices (nanoMoED). In first step we apply an organic solvent-based gold nanoparticle (AuNP) synthesis method to form either a 1-dodecanethiol or a mixed 1-dodecanethiol/omega-tetraphenyl ether substituted 1-dodecanethiol ligand shell. The functionalization of these AuNPs is tuned in a second step by a ligand functionalization process where biphenyldithiol (BPDT) molecules are introduced as bridging ligands into the shell of the AuNPs. From subsequent structural analysis and electrical measurements, we could observe a successful molecular functionalization in nanoMoED devices as well as we could deduce that differences in electrical properties between two different device types are related to the differences in the molecular functionalization process for the two different AuNPs synthesized in first step. The same devices yielded successful NO2 gas sensing. This opens the pathway for a simplified synthesis/fabrication of molecular electronic devices with application potential.
  •  
8.
  • Ghajeri, Farnaz, et al. (författare)
  • Case Study of a Green Nanoporous Material from Synthesis to Commercialisation : Quartzene®
  • 2018
  • Ingår i: Current Opinion in Green and Sustainable Chemistry. - : Elsevier. - 2452-2236. ; 12, s. 101-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthetic amorphous silicas with high porosity (94–97%) are introduced and various pathways for their synthesis are presented. The materials have structures with high surface area (300–750 m2/g) and are commercialised under the name of Quartzene®. Low cost silica sources and ambient pressure drying enable production in large scale with approximately 70% cost reduction as compared to conventional method silica aerogels. The structure is analysed, properties are reported as low density (0.04–0.15 g/ml), low thermal conductivity (24–26 mW/m·K), etc. Formaldehyde gas adsorption tests reveal that the uptake level of samples made by Quartzene® is significantly increased as compared to commercially available adsorbents. Thermal conductivity at elevated temperatures for mixtures of Quartzene® and stone wool shows a 23% reduction at 650 °C as compared to pure stone wool. Scaling up process for this green material meeting environmental sustainability demands in industrial manufacturing is discussed and challenges/current developments are presented.
  •  
9.
  • Grigoriev, Anton, et al. (författare)
  • Comment on "Quantum interference effects in biphenyl dithiol for gas detection" by J. Prasongkit and A. R. Rocha, RSC Adv., 2016, 64, 59299-59304
  • 2020
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 10:4, s. 2073-2074
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The paper [Prasongkit et al., RSC Adv., 2016, 64, 59299] by Prasongkit and Rocha calculates the binding energy of gas molecules attached to 1-8-biphenyl-dithiol (BPDT) molecules. We find from our calculations, that the binding energies calculated for the NO2 molecules are too low, most likely due to lacking optimization of the site at which the gas molecule binds to the BPDT. Though not shown explicitly here, the same statement might apply to the other gas molecules used in this paper.
  •  
10.
  • Han, Yuanyuan, et al. (författare)
  • Graphene Based Mechanical Biosensor by Employing Non-covalent Stacking Functionalization
  • 2019
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Herein we demonstrate a novel methodology to achieve mechanical biosensor by employing the distinguished interaction forces between the atomic force microscope (AFM) probe and sensor surfaces as the response signal. This mechanical biosensor is fabricated by utilizing the non-covalent π-π stacking of pyrene-maltose onto graphene surfaces with Concanavalin A (Con A) as a target protein. The atomic resolution scanning tunneling microscopy (STM) images indicate the successful formation of the self-assembled and densely packed pyrene-maltose layer on the sensor surface, which gives distinct atomic lattice structure as compared to pristine graphene. This mechanical biosensor exhibits detection of Con A with the sensitivity down to nanomolar level. Therefore, this proposed mechanical biosensor has the potential to be employed in a variety of bio-sensing applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy