SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jahic M) "

Sökning: WFRF:(Jahic M)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Enfors, Sven-Olof, et al. (författare)
  • Physiological responses to mixing in large scale bioreactors
  • 2001
  • Ingår i: Journal of Biotechnology. - 0168-1656 .- 1873-4863. ; 85:2, s. 175-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Escherichia coli fed-batch cultivations at 22 m(3) scale were compared to corresponding laboratory scale processes and cultivations using a scale-down reactor furnished with a high-glucose concentration zone to mimic the conditions in a feed zone of the large bioreactor. Formate accumulated in the large reactor, indicating the existence of oxygen limitation zones. It is suggested that the reduced biomass yield at large scale partly is due to repeated production/reassimilation of acetate from overflow metabolism and mixed acid fermentation products due to local moving zones with oxygen limitation. The conditions that generated mixed-acid fermentation in the scale-down reactor also induced a number of stress responses, monitored by analysis of mRNA of selected stress induced genes. The stress responses were relaxed when the cells returned to the substrate limited and oxygen sufficient compartment of the reactor. Corresponding analysis in the large reactor showed that the concentration of mRNA of four stress induced genes was lowest at the sampling port most distant from the feed zone. It is assumed that repeated induction/relaxation of stress responses in a large bioreactor may contribute to altered physiological properties of the cells grown in large-scale bioreactor. Flow cytometric analysis revealed reduced damage with respect to cytoplasmic membrane potential and integrity in cells grown in the dynamic environments of the large scale reactor and the scale-down reactor.
  •  
2.
  •  
3.
  • Charoenrat, Theppanya, et al. (författare)
  • Oxygen-limited fed-batch process : an alternative control for Pichia pastoris recombinant protein processes
  • 2005
  • Ingår i: Bioprocess and biosystems engineering (Print). - : Springer Science and Business Media LLC. - 1615-7591 .- 1615-7605. ; 27:6, s. 399-406
  • Tidskriftsartikel (refereegranskat)abstract
    • An oxygen-limited fed-batch technique (OLFB) was compared to traditional methanol-limited fed-batch technique (MLFB) for the production of recombinant Thai Rosewood beta-glucosidase with Pichia pastoris. The degree of energy limitation, expressed as the relative rate of respiration (q(O)/q(O,max)), was kept similar in both the types of processes. Due to the higher driving force for oxygen transfer in the OLFB, the oxygen and methanol consumption rates were about 40% higher in the OLFB. The obligate aerobe P. pastoris responded to the severe oxygen limitation mainly by increased maintenance demand, measured as increased carbon dioxide production per methanol, but still somewhat higher cell density (5%) and higher product concentrations (16%) were obtained. The viability was similar, about 90-95%, in both process types, but the amount of total proteins released in the medium was much less in the OLFB processes resulting in substantially higher (64%) specific enzyme purity for input to the downstream processing.
  •  
4.
  • Jahic, M., et al. (författare)
  • Interfacing Pichia pastoris cultivation with expanded bed adsorption
  • 2006
  • Ingår i: Biotechnology and Bioengineering. - : Wiley. - 0006-3592 .- 1097-0290. ; 93:6, s. 1040-1049
  • Tidskriftsartikel (refereegranskat)abstract
    • For improved interfacing of the Pichia pastoris fed-batch cultivation process with expanded bed adsorption (EBA) technique, a modified cultivation technique was developed. The modification included the reduction of the medium salt concentration, which was then kept constant by regulating the medium conductivity at low value (about 8 mS/cm) by salt feeding. Before loading, the low conductivity culture broth was diluted only to reduce viscosity, caused by high cell density. The concept was applied to a one-step recovery and purification procedure for a fusion protein composed of a cellulose-binding module (CBM) from Neocallimastix patriciarum cellulase 6A fused to lipase B from Candida antarctica (CALB). The modified cultivation technique resulted in lower cell death and consequently lower concentration of proteases and other contaminating proteins in the culture broth. Flow cytometry analysis showed 1% dead (propidium-stained) cells compared to 3.5% in the reference process. During the whole process of cultivation and recovery, no proteolysis was detected and in the end of the cultivation, the product constituted 87% of the total supernatant protein. The lipase activity in the culture supernatant increased at an almost constant rate up to a value corresponding to 2.2 g/L of CBM-CALB. In the EBA process, no cell-adsorbent interaction was detected but the cell density had to be reduced by a two-times dilution to keep a proper bed expansion. At flow velocity of 400 cm/h, the breakthrough capacity was 12.4 g/L, the product yield 98%, the concentration factor 3.6 times, the purity about 90%, and the productivity 2.1 g/L (.) h.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy