SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jaimes Mogollon Aylen Lisset) "

Sökning: WFRF:(Jaimes Mogollon Aylen Lisset)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brebu, Mihai, et al. (författare)
  • Putative volatile biomarkers of bovine tuberculosis infection in breath, skin and feces of cattle
  • 2023
  • Ingår i: Molecular and Cellular Biochemistry. - : Springer. - 0300-8177 .- 1573-4919. ; 478:11, s. 2473-2480
  • Tidskriftsartikel (refereegranskat)abstract
    • Bovine tuberculosis (bTB) is an infectious disease with significant impact on animal health, public health and international trade. Standard bTB screening in live cattle consists in injecting tuberculin and measuring the swelling at the place of injection few days later. This procedure is expensive, time-consuming, logistically challenging, and is not conclusive before performing confirmatory tests and additional analysis. The analysis of the volatile organic compounds (VOCs) emitted by non-invasive biological samples can provide an alternative diagnostic approach suitable for bTB screening. In the present study, we analyzed VOC samples emitted through the breath, feces and skin of 18 cows diagnosed with bTB from three farms from Romania, as well as of 27 negative cows for bTB from the same farms. Analytical studies employing gas chromatography coupled to mass spectrometry revealed 80 VOCs emitted through the breath, 200 VOCs released by feces, and 80 VOCs emitted through the skin. Statistical analysis of these compounds allowed the identification of 3 tentative breath VOC biomarkers (acetone; 4-methyldecane; D-limonene), 9 tentative feces VOC biomarkers (toluene; [(1,1-dimethylethyl)thio]acetic acid; alpha-thujene; camphene; phenol; o-cymene; 3-(1,1-dimethylethyl)-2,2,4,4-tetramethyl-3-pentanol; 2,5-dimethylhexane-2,5-dihydroperoxide; 2,4-di-tert-butylphenol), and 3 tentative skin VOC biomarkers (ammonia; 1-methoxy-2-propanol; toluene). The possible pathway of these volatile biomarkers is discussed.
  •  
2.
  • de Jesus Beleno-Saenz, Kelvin, et al. (författare)
  • Non-Invasive Method to Detect Infection with Mycobacterium tuberculosis Complex in Wild Boar by Measurement of Volatile Organic Compounds Obtained from Feces with an Electronic Nose System
  • 2021
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 21:2
  • Tidskriftsartikel (refereegranskat)abstract
    • More effective methods to detect bovine tuberculosis, caused by Mycobacterium bovis, in wildlife, is of paramount importance for preventing disease spread to other wild animals, livestock, and human beings. In this study, we analyzed the volatile organic compounds emitted by fecal samples collected from free-ranging wild boar captured in Donana National Park, Spain, with an electronic nose system based on organically-functionalized gold nanoparticles. The animals were separated by the age group for performing the analysis. Adult (>24 months) and sub-adult (12-24 months) animals were anesthetized before sample collection, whereas the juvenile (<12 months) animals were manually restrained while collecting the sample. Good accuracy was obtained for the adult and sub-adult classification models: 100% during the training phase and 88.9% during the testing phase for the adult animals, and 100% during both the training and testing phase for the sub-adult animals, respectively. The results obtained could be important for the further development of a non-invasive and less expensive detection method of bovine tuberculosis in wildlife populations.
  •  
3.
  • Durán-Acevedo, Cristhian Manuel, et al. (författare)
  • Exhaled breath analysis for gastric cancer diagnosis in Colombian patients.
  • 2018
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 9:48, s. 28805-28817
  • Tidskriftsartikel (refereegranskat)abstract
    • We present here the first study that directly correlates gastric cancer (GC) with specific biomarkers in the exhaled breath composition on a South American population, which registers one of the highest global incidence rates of gastric affections. Moreover, we demonstrate a novel solid state sensor that predicts correct GC diagnosis with 97% accuracy. Alveolar breath samples of 30 volunteers (patients diagnosed with gastric cancer and a controls group formed of patients diagnosed with other gastric diseases) were collected and analyzed by gas-chromatography/mass-spectrometry (GC-MS) and with an innovative chemical gas sensor based on gold nanoparticles (AuNP) functionalized with octadecylamine ligands. Our GC-MS analyses identified 6 volatile organic compounds that showed statistically significant differences between the cancer patients and the controls group. These compounds were different from those identified in previous studied performed on other populations with high incidence rates of this malady, such as China (representative for Eastern Asia region) and Latvia (representative for Baltic States), attributable to lifestyle, alimentation and genetics differences. A classification model based on principal component analysis of our sensor data responses to the breath samples yielded 97% accuracy, 100% sensitivity and 93% specificity. Our results suggest a new and non-intrusive methodology for early diagnosis of gastric cancer that may be deployed in regions lacking well-developed health care systems as a prediagnosis test for selecting the patients that should undergo deeper investigations (e.g., endoscopy and biopsy).
  •  
4.
  • Jaimes-Mogollon, Aylen Lisset, et al. (författare)
  • Review on Volatolomic Studies as a Frontier Approach in Animal Research
  • 2021
  • Ingår i: Advanced Biology. - : John Wiley & Sons. - 2701-0198. ; 5:6
  • Forskningsöversikt (refereegranskat)abstract
    • This paper presents a comprehensive review of the research studies in volatolomics performed on animals so far. At first, the procedures proposed for the collection, preconcentration, and storing of the volatile organic compounds emitted by various biological samples of different animals are presented and discussed. Next, the results obtained in the analysis of the collected volatile samples with analytical equipment are shown. The possible volatile biomarkers identified for various diseases are highlighted for different types of diseases, animal species, and biological samples analyzed. The chemical classes of these compounds, as well as the biomarkers found in a higher number of animal diseases, are indicated, and their possible origin is analyzed. The studies that dealt with the diagnosis of various diseases from sample measurement with electronic nose systems are also presented and discussed. The paper ends with a final remark regarding the necessity of optimization and standardization of sample collection and analysis procedures for obtaining meaningful results.
  •  
5.
  • Kwiatkowski, Andrzej, et al. (författare)
  • Assessment of Electronic Sensing Techniques for the Rapid Identification of Alveolar Echinococcosis through Exhaled Breath Analysis
  • 2020
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 20:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we present a proof-of-concept study showing the potential of a chemical gas sensors system to identify the patients with alveolar echinococcosis disease through exhaled breath analysis. The sensors system employed comprised an array of three commercial gas sensors and a custom gas sensor based on WO3 nanowires doped with gold nanoparticles, optimized for the measurement of common breath volatile organic compounds. The measurement setup was designed for the concomitant measurement of both sensors DC resistance and AC fluctuations during breath samples exposure. Discriminant Function Analysis classification models were built with features extracted from sensors responses, and the discrimination of alveolar echinococcosis was estimated through bootstrap validation. The commercial sensor that detects gases such as alkane derivatives and ethanol, associated with lipid peroxidation and intestinal gut flora, provided the best classification (63.4% success rate, 66.3% sensitivity and 54.6% specificity) when sensors’ responses were individually analyzed, while the model built with the AC features extracted from the responses of the cross-reactive sensors array yielded 90.2% classification success rate, 93.6% sensitivity and 79.4% specificity. This result paves the way for the development of a noninvasive, easy to use, fast and inexpensive diagnostic test for alveolar echinococcosis diagnosis at an early stage, when curative treatment can be applied to the patients.
  •  
6.
  • Saidi, Tarik, et al. (författare)
  • Non-invasive prediction of lung cancer histological types through exhaled breath analysis by UV-irradiated electronic nose and GC/QTOF/MS
  • 2020
  • Ingår i: Sensors and actuators. B, Chemical. - : Elsevier BV. - 0925-4005 .- 1873-3077. ; 311
  • Tidskriftsartikel (refereegranskat)abstract
    • Lung cancer (LC) is one of the most lethal diseases from the last decades. Accurate diagnosis of LC histology could lead to the prescription of personalized medical treatment to the affected subjects, which could reduce the mortality rate. We present here an experimental study performed in the pulmonology units of three hospitals from Morocco to non-invasively detect LC and predict LC histology via the analysis of the volatile organic compounds (VOCs) emitted through breathing. Gas chromatography coupled to a quadrupole time-of-flight mass spectrometer (GC/QTOF/MS) employed to detect the breath VOCs, revealed 30 discriminative VOCs in the breath of healthy subjects and LC patients; among them, 4 unique breath VOCs were found for the first time in the breath of LC patients, and could be used as new biomarkers for future LC diagnosis. Besides, an electronic nose (e-nose) system using a novel sensing technique in breath analysis, based on UV-irradiation of the gas sensors, was employed to characterize the overall composition of the collected breath samples, providing a satisfactory discrimination between the breath patterns of LC patients and healthy subjects. Importantly, the e-nose could further discriminate with high accuracy between the two types of LC (non-small cell LC and small cell LC), as well as between two of the major subtypes of non-small cell LC, namely squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The reported results prove that breath analysis with chemical gas sensors and analytical techniques can provided an accurate mean for the non-invasive diagnosis of LC and LC histology.
  •  
7.
  • Welearegay, Tesfalem, et al. (författare)
  • Exhaled air analysis as a potential fast method for early diagnosis of dengue disease
  • 2020
  • Ingår i: Sensors and actuators. B, Chemical. - Netherlands : Elsevier BV. - 0925-4005 .- 1873-3077. ; 310
  • Tidskriftsartikel (refereegranskat)abstract
    • Dengue is a neglected tropical disease caused by arbovirus. Every year 390 million persons are infected with dengue, of which 96 million manifest clinically around the world, mainly in the Latin America, South-East Asia and Western Pacific. The disease manifests itself as a flu-like infection that generally is difficult to recognise from a normal flu or other viral infections. The mortality rate is around 20 % for the severe form of dengue, which readily could be decreased to below 1% with early, reliable diagnostic tools. Today there exist however no diagnostic tests for the early and rapid diagnosis of this disease. In this study, we report for the first time the possibility of identification of possible biomarkers associated with dengue disease in the exhaled air, and of the development of a breath test for fast, non-invasive and easy diagnosis of this disease. Further, we demonstrate a new deployable sensor technology based on a chemoresistive metal-ligand nanoassembly tailored for the identified possible biomarkers of dengue disease, which achieved 100 % accuracy for dengue diagnosis on our study group and can be used in both specialist and non-specialist settings. Nevertheless, as the present study was performed on a limited number of patients because of the difficulty to recruit a high number of patients because dengue is a neglected disease, future validation tests on a higher cohort are necessary for corroborating the results obtained in the present study.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy