SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jalalvand A.) "

Sökning: WFRF:(Jalalvand A.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  •  
3.
  • Jalalvand, Farshid, et al. (författare)
  • Protein domain-dependent vesiculation of Lipoprotein A, a protein that is important in cell wall synthesis and fitness of the human respiratory pathogen Haemophilus influenzae
  • 2022
  • Ingår i: Frontiers in cellular and infection microbiology. - : Frontiers Media SA. - 2235-2988. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The human pathogen Haemophilus influenzae causes respiratory tract infections and is commonly associated with prolonged carriage in patients with chronic obstructive pulmonary disease. Production of outer membrane vesicles (OMVs) is a ubiquitous phenomenon observed in Gram-negative bacteria including H. influenzae. OMVs play an important role in various interactions with the human host; from neutralization of antibodies and complement activation to spread of antimicrobial resistance. Upon vesiculation certain proteins are found in OMVs and some proteins are retained at the cell membrane. The mechanism for this phenomenon is not fully elucidated. We employed mass spectrometry to study vesiculation and the fate of proteins in the outer membrane. Functional groups of proteins were differentially distributed on the cell surface and in OMVs. Despite its supposedly periplasmic and outer membrane location, we found that the peptidoglycan synthase-activator Lipoprotein A (LpoA) was accumulated in OMVs relative to membrane fractions. A mutant devoid of LpoA lost its fitness as revealed by growth and electron microscopy. Furthermore, high-pressure liquid chromatography disclosed a lower concentration (55%) of peptidoglycan in the LpoA-deficient H. influenzae compared to the parent wild type bacterium. Using an LpoA-mNeonGreen fusion protein and fluorescence microscopy, we observed that LpoA was enriched in “foci” in the cell envelope, and further located in the septum during cell division. To define the fate of LpoA, C-terminally truncated LpoA-variants were constructed, and we found that the LpoA C-terminal domain promoted optimal transportation to the OMVs as revealed by flow cytometry. Taken together, our study highlights the importance of LpoA for H. influenzae peptidoglycan biogenesis and provides novel insights into cell wall integrity and OMV production.
  •  
4.
  • Su, Yu Ching, et al. (författare)
  • Non-typeable Haemophilus influenzae major outer membrane protein P5 contributes to bacterial membrane stability, and affects the membrane protein composition crucial for interactions with the human host
  • 2023
  • Ingår i: Frontiers in Cellular and Infection Microbiology. - : Frontiers Media S.A.. - 2235-2988. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-typeable Haemophilus influenzae (NTHi) is a Gram-negative human pathogen that causes a wide range of airway diseases. NTHi has a plethora of mechanisms to colonize while evading the host immune system for the establishment of infection. We previously showed that the outer membrane protein P5 contributes to bacterial serum resistance by the recruitment of complement regulators. Here, we report a novel role of P5 in maintaining bacterial outer membrane (OM) integrity and protein composition important for NTHi-host interactions. In silico analysis revealed a peptidoglycan-binding motif at the periplasmic C-terminal domain (CTD) of P5. In a peptidoglycan-binding assay, the CTD of P5 (P5CTD) formed a complex with peptidoglycan. Protein profiling analysis revealed that deletion of CTD or the entire P5 changed the membrane protein composition of the strains NTHi 3655Δp5CTD and NTHi 3655Δp5, respectively. Relative abundance of several membrane-associated virulence factors that are crucial for adherence to the airway mucosa, and serum resistance were altered. This was also supported by similar attenuated pathogenic phenotypes observed in both NTHi 3655Δp5CTD and NTHi 3655Δp5. We found (i) a decreased adherence to airway epithelial cells and fibronectin, (ii) increased complement-mediated killing, and (iii) increased sensitivity to the β-lactam antibiotics in both mutants compared to NTHi 3655 wild-type. These mutants were also more sensitive to lysis at hyperosmotic conditions and hypervesiculated compared to the parent wild-type bacteria. In conclusion, our results suggest that P5 is important for bacterial OM stability, which ultimately affects the membrane proteome and NTHi pathogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy