SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jalarvo Niina H.) "

Sökning: WFRF:(Jalarvo Niina H.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beck, Christian, et al. (författare)
  • Notes on Fitting and Analysis Frameworks for QENS Spectra of (Soft) Colloid Suspensions
  • 2022
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X. ; 272, s. 01004-01004
  • Tidskriftsartikel (refereegranskat)abstract
    • With continuously improving signal-to-noise ratios, a statistically sound analysis of quasi-elasticneutron scattering (QENS) spectra requires to fit increasingly complex models which poses several challenges.Simultaneous fits of the spectra for all recorded values of the momentum transfer become a standard approach.Spectrometers at spallation sources can have a complicated non-Gaussian resolution function which has to bedescribed most accurately. At the same time, to speed up the fitting, an analytical convolution with this resolutionfunction is of interest. Here, we discuss basic concepts to efficient approaches for fits of QENS spectra basedon standard MATLAB and Python fit algorithms. We illustrate the fits with example data from IN16B, BASIS,and BATS.
  •  
2.
  • Beck, Christian, et al. (författare)
  • Temperature and salt controlled tuning of protein clusters
  • 2021
  • Ingår i: Soft Matter. - : Royal Society of Chemistry. - 1744-683X .- 1744-6848. ; :37, s. 8506-8516
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of molecular assemblies in protein solutions is of strong interest both from a fundamental viewpoint and for biomedical applications. While ordered and desired protein assemblies are indispensable for some biological functions, undesired protein condensation can induce serious diseases. As a common cofactor, the presence of salt ions is essential for some biological processes involving proteins, and in aqueous suspensions of proteins can also give rise to complex phase diagrams including homogeneous solutions, large aggregates, and dissolution regimes. Here, we systematically study the cluster formation approaching the phase separation in aqueous solutions of the globular protein BSA as a function of temperature (T), the protein concentration (c(p)) and the concentrations of the trivalent salts YCl3 and LaCl3 (c(s)). As an important complement to structural, i.e. time-averaged, techniques we employ a dynamical technique that can detect clusters even when they are transient on the order of a few nanoseconds. By employing incoherent neutron spectroscopy, we unambiguously determine the short-time self-diffusion of the protein clusters depending on c(p), c(s) and T. We determine the cluster size in terms of effective hydrodynamic radii as manifested by the cluster center-of-mass diffusion coefficients D. For both salts, we find a simple functional form D(c(p), c(s), T) in the parameter range explored. The calculated inter-particle attraction strength, determined from the microscopic and short-time diffusive properties of the samples, increases with salt concentration and temperature in the regime investigated and can be linked to the macroscopic behavior of the samples.
  •  
3.
  • Eklöf-Österberg, Carin, 1987, et al. (författare)
  • Dynamics of Hydride Ions in Metal Hydride-Reduced BaTiO3 Samples Investigated with Quasielastic Neutron Scattering
  • 2019
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 123:4, s. 2019-2030
  • Tidskriftsartikel (refereegranskat)abstract
    • Perovskite-type oxyhydrides, BaTiO3-xHx, have been recently shown to exhibit hydride-ion (H-) conductivity at elevated temperatures, but the underlying mechanism of hydride-ion conduction and how it depends on temperature and oxygen vacancy concentration remains unclear. Here, we investigate, through the use of quasielastic neutron scattering techniques, the nature of the hydride-ion dynamics in three metal hydride-reduced BaTiO3 samples that are characterized by the simultaneous presence of hydride ions and oxygen vacancies. Measurements of elastic fixed window scans upon heating reveal the presence of quasielastic scattering due to hydride-ion dynamics for temperatures above ca. 200 K. Analyses of quasielastic spectra measured at low (225 and 250 K) and high (400-700 K) temperature show that the dynamics can be adequately described by established models of jump diffusion. At low temperature, <= 250 K, all of the models feature a characteristic jump distance of about 2.8 angstrom, thus of the order of the distance between neighboring oxygen atoms or oxygen vacancies of the perovskite lattice and a mean residence time between successive jumps of the order of 0.1 ns. At higher temperatures, >400 K, the jump distance increases to about 4 angstrom, thus of the order of the distance between next-nearest neighboring oxygen atoms or oxygen vacancies, with a mean residence time of the order of picoseconds. A diffusion constant D was computed from the data measured at low and high temperatures, respectively, and takes on values of about 0.4 X 10(-6) cm(-2) s(-1) at the lowest applied temperature of 225 K and between ca. 20 X 10(-6) and 100 X 10(-6) cm(-2) s(-1) at temperatures between 400 and 700 K. Activation energies E-a were derived from the measurements at high temperatures and take on values of about 0.1 eV and show a slight increase with increasing oxygen vacancy concentration.
  •  
4.
  • Eklöf-Österberg, Carin, 1987, et al. (författare)
  • The role of oxygen vacancies on the vibrational motions of hydride ions in the oxyhydride of barium titanate
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 8:13, s. 6360-6371
  • Tidskriftsartikel (refereegranskat)abstract
    • Perovskite-type oxyhydrides, BaTiO3-xHx, represent a novel class of hydride ion conducting materials of interest for several electrochemical applications, but fundamental questions surrounding the defect chemistry and hydride ion transport mechanism remain unclear. Here we report results from powder X-ray diffraction, thermal gravimetric analysis, nuclear magnetic resonance spectroscopy, inelastic neutron scattering (INS), and density functional theory (DFT) simulations on three metal hydride reduced BaTiO3 samples characterized by the simultaneous presence of hydride ions and oxygen vacancies. The INS spectra are characterized by two predominating bands at around 114 (omega(perpendicular to)) and 128 (omega(parallel to)) meV, assigned as fundamental Ti-H vibrational modes perpendicular and parallel to the Ti-H-Ti bond direction, respectively, and four additional, weaker, bands at around 99 (omega(1)), 110 (omega(2)), 137 (omega(3)) and 145 (omega(4)) meV that originate from a range of different local structures associated with different configurations of the hydride ions and oxygen vacancies in the materials. Crucially, the combined analyses of INS and DFT data confirm the presence of both nearest and next-nearest neighbouring oxygen vacancies to the hydride ions. This supports previous findings from quasielastic neutron scattering experiments, that the hydride ion transport is governed by jump diffusion dynamics between neighbouring and next-nearest neighbouring hydride ion-oxygen vacancy local structures. Furthermore, the investigation of the momentum transfer dependence of the INS spectrum is used to derive the mean square displacement of the hydride ions, which is shown to be in excellent agreement with the calculations. Analysis of the mean square displacement confirms that the hydrogen vibrational motions are localized in nature and only very weakly affected by the dynamics of the surrounding perovskite structure. This insight motivates efforts to identify alternative host lattices that allow for a less localization of the hydride ions as a route to higher hydride ion conductivities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy