SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jansson Alexander) "

Sökning: WFRF:(Jansson Alexander)

  • Resultat 1-10 av 152
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jansson-Fröjmark, Markus, et al. (författare)
  • Paradoxical intention for insomnia : A systematic review and meta-analysis
  • 2021
  • Ingår i: Journal of Sleep Research. - : Wiley-Blackwell Publishing Inc.. - 0962-1105 .- 1365-2869. ; , s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Paradoxical intention (PI) has been considered an evidence-based treatment for insomnia since the 1990s, but it has not been evaluated with modern review techniques such as meta-analysis. The present study aimed to conduct the first systematic review and meta-analysis of studies that explore the effectiveness of PI for insomnia on insomnia symptomatology and theory-derived processes. A systematic review and meta-analysis was conducted by searching for eligible articles or dissertations in six online bibliographic databases. Randomised controlled trials and experimental studies comparing PI for insomnia to active and passive comparators and assessing insomnia symptoms as outcomes were included. A random effects model was estimated to determine the standardised mean difference Hedge's g at post-treatment. Test for heterogeneity was performed, fail-safe N was calculated, and study quality was assessed. The study was pre-registered at International Prospective Register of Systematic Reviews (PROSPERO, CRD42019137357). A total of 10 trials were identified. Compared to passive comparators, PI led to large improvements in key insomnia symptoms. Relative to active comparators, the improvements were smaller, but still moderate for several central outcomes. Compared to passive comparators, PI resulted in great reductions in sleep-related performance anxiety, one of several proposed mechanisms of change for PI. PI for insomnia resulted in marked clinical improvements, large relative to passive comparators and moderate compared to active comparators. However, methodologically stronger studies are needed before more firm conclusions can be drawn.
  •  
2.
  •  
3.
  • Aartsen, M. G., et al. (författare)
  • Characteristics of the Diffuse Astrophysical Electron and Tau Neutrino Flux with Six Years of IceCube High Energy Cascade Data
  • 2020
  • Ingår i: Physical Review Letters. - : American Physical Society (APS). - 0031-9007 .- 1079-7114. ; 125:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010-2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated (similar to 90%) by electron and tau flavors. The flux, observed in the sensitive energy range from 16 TeV to 2.6 PeV, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be gamma = 2.53 +/- 0.07 and a flux normalization for each neutrino flavor of phi(astro) = 1.66(-0.27)(+0.25) at E-0 = 100 TeV, in agreement with IceCube's complementary muon neutrino results and with all-neutrino flavor fit results. In the measured energy range we reject spectral indices gamma <= 2.28 at >= 3 sigma significance level. Because of high neutrino energy resolution and low atmospheric neutrino backgrounds, this analysis provides the most detailed characterization of the neutrino flux at energies below similar to 100 TeV compared to previous IceCube results. Results from fits assuming more complex neutrino flux models suggest a flux softening at high energies and a flux hardening at low energies (p value >= 0.06). The sizable and smooth flux measured below similar to 100 TeV remains a puzzle. In order to not violate the isotropic diffuse gamma-ray background as measured by the Fermi Large Area Telescope, it suggests the existence of astrophysical neutrino sources characterized by dense environments which are opaque to gamma rays.
  •  
4.
  • Aartsen, M. G., et al. (författare)
  • Detection of a particle shower at the Glashow resonance with IceCube
  • 2021
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 591:7849, s. 220-224
  • Tidskriftsartikel (refereegranskat)abstract
    • The Glashow resonance describes the resonant formation of a W− boson during the interaction of a high-energy electron antineutrino with an electron1, peaking at an antineutrino energy of 6.3 petaelectronvolts (PeV) in the rest frame of the electron. Whereas this energy scale is out of reach for currently operating and future planned particle accelerators, natural astrophysical phenomena are expected to produce antineutrinos with energies beyond the PeV scale. Here we report the detection by the IceCube neutrino observatory of a cascade of high-energy particles (a particle shower) consistent with being created at the Glashow resonance. A shower with an energy of 6.05 ± 0.72 PeV (determined from Cherenkov radiation in the Antarctic Ice Sheet) was measured. Features consistent with the production of secondary muons in the particle shower indicate the hadronic decay of a resonant W− boson, confirm that the source is astrophysical and provide improved directional localization. The evidence of the Glashow resonance suggests the presence of electron antineutrinos in the astrophysical flux, while also providing further validation of the standard model of particle physics. Its unique signature indicates a method of distinguishing neutrinos from antineutrinos, thus providing a way to identify astronomical accelerators that produce neutrinos via hadronuclear or photohadronic interactions, with or without strong magnetic fields. As such, knowledge of both the flavour (that is, electron, muon or tau neutrinos) and charge (neutrino or antineutrino) will facilitate the advancement of neutrino astronomy.
  •  
5.
  • Aartsen, M. G., et al. (författare)
  • eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory
  • 2020
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 125:14
  • Tidskriftsartikel (refereegranskat)abstract
    • The results of a 3 + 1 sterile neutrino search using eight years of data from the IceCube Neutrino Observatory are presented. A total of 305 735 muon neutrino events are analyzed in reconstructed energy-zenith space to test for signatures of a matter-enhanced oscillation that would occur given a sterile neutrino state with a mass-squared differences between 0.01 and 100 eV(2). The best-fit point is found to be at sin(2)(2 theta(24)) = 0.10 and Delta m(41)(2) = 4.5 eV(2), which is consistent with the no sterile neutrino hypothesis with a p value of 8.0%.
  •  
6.
  • Aartsen, M. G., et al. (författare)
  • Follow-up of Astrophysical Transients in Real Time with the IceCube Neutrino Observatory
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 910:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In multi-messenger astronomy, rapid investigation of interesting transients is imperative. As an observatory with a 4 pi steradian field of view, and similar to 99% uptime, the IceCube Neutrino Observatory is a unique facility to follow up transients, as well as to provide valuable insights for other observatories and inform their observational decisions. Since 2016, IceCube has been using low-latency data to rapidly respond to interesting astrophysical events reported by the multi-messenger observational community. Here, we describe the pipeline used to perform these followup analyses, and provide a summary of the 58 analyses performed as of July 2020. We find no significant signal in the first 58 analyses performed. The pipeline has helped inform various electromagnetic observation strategies, and has constrained neutrino emission from potential hadronic cosmic accelerators.
  •  
7.
  • Aartsen, M. G., et al. (författare)
  • IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-wave Transient Catalog
  • 2020
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 898:1, s. L10-
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational-wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each GW event within a 1000 s time window centered around the reported merger time. One search uses a model-independent unbinned maximum-likelihood analysis, which uses neutrino data from IceCube to search for pointlike neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which incorporates astrophysical priors through a Bayesian framework and includes LIGO-Virgo detector characteristics to determine the association between the GW source and the neutrinos. No significant neutrino coincidence is seen by either search during the first two observing runs of the LIGO-Virgo detectors. We set upper limits on the time-integrated neutrino emission within the 1000 s window for each of the 11 GW events. These limits range from 0.02 to 0.7 . We also set limits on the total isotropic equivalent energy, E-iso, emitted in high-energy neutrinos by each GW event. These limits range from 1.7 x 10(51) to 1.8 x 10(55) erg. We conclude with an outlook for LIGO-Virgo observing run O3, during which both analyses are running in real time.
  •  
8.
  • Aartsen, M. G., et al. (författare)
  • Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube Neutrino Telescope
  • 2020
  • Ingår i: Physical Review D. - : AMER PHYSICAL SOC. - 1550-7998 .- 1550-2368. ; 102:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We report in detail on searches for eV-scale sterile neutrinos, in the context of a 3 + 1 model, using eight years of data from the IceCube Neutrino Telescope. By analyzing the reconstructed energies and zenith angles of 305,735 atmospheric nu(mu) and (nu) over bar (mu) events we construct confidence intervals in two analysis spaces: sin(2)(2 theta(24)) vs Delta m(41)(2) under the conservative assumption theta(34) = 0; and sin(2)(2 theta(24)) vs sin(2)(2 theta(34)) given sufficiently large Delta m(41)(2) that fast oscillation features are unresolvable. Detailed discussions of the event selection, systematic uncertainties, and fitting procedures are presented. No strong evidence for sterile neutrinos is found, and the best-fit likelihood is consistent with the no sterile neutrino hypothesis with a p value of 8% in the first analysis space and 19% in the second.
  •  
9.
  • Abbasi, R., et al. (författare)
  • A convolutional neural network based cascade reconstruction for the IceCube Neutrino Observatory
  • 2021
  • Ingår i: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221. ; 16:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Continued improvements on existing reconstruction methods are vital to the success of high-energy physics experiments, such as the IceCube Neutrino Observatory. In IceCube, further challenges arise as the detector is situated at the geographic South Pole where computational resources are limited. However, to perform real-time analyses and to issue alerts to telescopes around the world, powerful and fast reconstruction methods are desired. Deep neural networks can be extremely powerful, and their usage is computationally inexpensive once the networks are trained. These characteristics make a deep learning-based approach an excellent candidate for the application in IceCube. A reconstruction method based on convolutional architectures and hexagonally shaped kernels is presented. The presented method is robust towards systematic uncertainties in the simulation and has been tested on experimental data. In comparison to standard reconstruction methods in IceCube, it can improve upon the reconstruction accuracy, while reducing the time necessary to run the reconstruction by two to three orders of magnitude.
  •  
10.
  • Abbasi, R., et al. (författare)
  • A Search for Time-dependent Astrophysical Neutrino Emission with IceCube Data from 2012 to 2017
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 911:1
  • Tidskriftsartikel (refereegranskat)abstract
    • High-energy neutrinos are unique messengers of the high-energy universe, tracing the processes of cosmic ray acceleration. This paper presents analyses focusing on time-dependent neutrino point-source searches. A scan of the whole sky, making no prior assumption about source candidates, is performed, looking for a space and time clustering of high-energy neutrinos in data collected by the IceCube Neutrino Observatory between 2012 and 2017. No statistically significant evidence for a time-dependent neutrino signal is found with this search during this period, as all results are consistent with the background expectation. Within this study period, the blazar 3C 279, showed strong variability, inducing a very prominent gamma-ray flare observed in 2015 June. This event motivated a dedicated study of the blazar, which consists of searching for a time-dependent neutrino signal correlated with the gamma-ray emission. No evidence for a time-dependent signal is found. Hence, an upper limit on the neutrino fluence is derived, allowing us to constrain a hadronic emission model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 152
Typ av publikation
tidskriftsartikel (87)
konferensbidrag (35)
rapport (10)
doktorsavhandling (7)
annan publikation (4)
bokkapitel (4)
visa fler...
forskningsöversikt (2)
samlingsverk (redaktörskap) (1)
bok (1)
licentiatavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (118)
övrigt vetenskapligt/konstnärligt (31)
populärvet., debatt m.m. (3)
Författare/redaktör
Ahrens, Maryon (32)
Hultqvist, Klas (32)
Botner, Olga (32)
Finley, Chad (32)
Walck, Christian (32)
Hallgren, Allan, 195 ... (32)
visa fler...
Deoskar, Kunal (32)
Burgman, Alexander (32)
Jansson, Matti (32)
Pérez de los Heros, ... (31)
O'Sullivan, Erin (30)
Abbasi, R. (19)
Glaser, Christian (16)
Sharma, Ankur (15)
Valtonen-Mattila, No ... (15)
Gustavsson, Cecilia (15)
Unger, Elisabeth (14)
Zhang, Z. (12)
Tarrío, Diego (12)
Bohm, Christian (11)
Al-Adili, Ali (11)
Pomp, Stephan (10)
Aartsen, M. G. (9)
Zoecklein, M. (9)
Medvedev, Alexander (9)
Jansson, Kaj (9)
Rakopoulos, Vasileio ... (8)
Österlund, Michael (8)
Jansson, Kaj, 1987- (8)
Zhelnin, P. (7)
Jansson, Stefan, 195 ... (7)
Vikman, Jenny (6)
Solders, Andreas, 19 ... (6)
Pomp, Stephan, 1968- (6)
Jansson, Magnus, Pro ... (6)
Luan, Jian'an (6)
Ruban, Alexander V (6)
Vandenput, Liesbeth, ... (5)
Perola, Markus (5)
Ohlsson, Claes, 1965 (5)
Wareham, Nicholas J. (5)
McCarthy, Mark I (5)
Pedersen, Oluf (5)
Hansen, Torben (5)
Ridker, Paul M. (5)
Chasman, Daniel I. (5)
Mattera, Andrea (5)
Prokofiev, Alexander ... (5)
Prokofiev, Alexander (5)
Horton, Peter (5)
visa färre...
Lärosäte
Uppsala universitet (83)
Stockholms universitet (37)
Malmö universitet (27)
Göteborgs universitet (18)
Lunds universitet (16)
Umeå universitet (14)
visa fler...
Karolinska Institutet (12)
Linnéuniversitetet (9)
Kungliga Tekniska Högskolan (8)
Högskolan Kristianstad (5)
Örebro universitet (5)
Linköpings universitet (5)
Gymnastik- och idrottshögskolan (5)
Karlstads universitet (3)
Mittuniversitetet (2)
Sveriges Lantbruksuniversitet (2)
Luleå tekniska universitet (1)
Jönköping University (1)
Södertörns högskola (1)
visa färre...
Språk
Engelska (134)
Svenska (18)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (65)
Medicin och hälsovetenskap (48)
Samhällsvetenskap (22)
Teknik (21)
Lantbruksvetenskap (3)
Humaniora (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy