SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jantsch Axel Prof.) "

Sökning: WFRF:(Jantsch Axel Prof.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Naeem, Abdul, 1976- (författare)
  • Architecture Support and Scalability Analysis of Memory Consistency Models in Network-on-Chip based Systems
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The shared memory systems should support parallelization at the computation (multi-core), communication (Network-on-Chip, NoC) and memory architecture levels to exploit the potential performance benefits. These parallel systems supporting shared memory abstraction both in the general purpose and application specific domains are confronting the critical issue of memory consistency. The memory consistency issue arises due to the unconstrained memory operations which leads to the unexpected behavior of shared memory systems. The memory consistency models enforce ordering constraints on the memory operations for the expected behavior of the shared memory systems. The intuitive Sequential Consistency (SC) model enforces strict ordering constraints on the memory operations and does not take advantage of the system optimizations both in the hardware and software. Alternatively, the relaxed memory consistency models relax the ordering constraints on the memory operations and exploit these optimizations to enhance the system performance at the reasonable cost. The purpose of this thesis is twofold. First, the novel architecture supports are provided for the different memory consistency models like: SC, Total Store Ordering (TSO), Partial Store Ordering (PSO), Weak Consistency (WC), Release Consistency (RC) and Protected Release Consistency (PRC) in the NoC-based multi-core (McNoC) systems. The PRC model is proposed as an extension of the RC model which provides additional reordering and relaxation in the memory operations. Second, the scalability analysis of these memory consistency models is performed in the McNoC systems.The architecture supports for these different memory consistency models are provided in the McNoC platforms. Each configurable McNoC platform uses a packet-switched 2-D mesh NoC with deflection routing policy, distributed shared memory (DSM), distributed locks and customized processor interface. The memory consistency models/protocols are implemented in the customized processor interfaces which are developed to integrate the processors with the rest of the system. The realization schemes for the memory consistency models are based on a transaction counter and an an an address ddress ddress ddress ddress ddress ddress stack tacktack-based based based based based based novel approaches.approaches.approaches.approaches. approaches.approaches.approaches.approaches.approaches.approaches. The transaction counter is used in each node of the network to keep track of the outstanding memory operations issued by a processor in the system. The address stack is used in each node of the network to keep track of the addresses of the outstanding memory operations issued by a processor in the system. These hardware structures are used in the processor interface to enforce the required global orders under these different memory consistency models. The realization scheme of the PRC model in addition also uses acquire counter for further classification of the data operations as unprotected and protected operations.The scalability analysis of these different memory consistency models is performed on the basis of different workloads which are developed and mapped on the various sized networks. The scalability study is conducted in the McNoC systems with 1 to 64-cores with various applications using different problem sizes and traffic patterns. The performance metrics like execution time, performance, speedup, overhead and efficiency are evaluated as a function of the network size. The experiments are conducted both with the synthetic and application workloads. The experimental results under different application workloads show that the average execution time under the relaxed memory consistency models decreases relative to the SC model. The specific numbers are highly sensitive to the application and depend on how well it matches to the architectures. This study shows the performance improvement under the relaxed memory consistency models over the SC model that is dependent on the computation-to-communication ratio, traffic patterns, data-to-synchronization ratio and the problem size. The performance improvement of the PRC and RC models over the SC model tends to be higher than 50% as observed in the experiments, when the system is further scaled up.
  •  
2.
  • Raudvere, Tarvo, 1976- (författare)
  • System Level Techniques for Verification and Synchronization after Local Design Refinements
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Today's advanced digital devices are enormously complex and incorporate many functions. In order to capture the system functionality and to be able to analyze the needs for a final implementation more efficiently, the entry point of the system development process is pushed to a higher level of abstraction. System level design methodologies describe the initial system model without considering lower level implementation details and the objective of the design development process is to introduce lower level details through design refinement. In practice this kind of refinement process may entail non-semantic-preserving changes in the system description, and introduce new behaviors in the system functionality. In spite of new behaviors, a model formed by the refinement may still satisfy the design constraints and to realize the expected system. Due to the size of the involved models and the huge abstraction gap, the direct verification of a detailed implementation model against the abstract system model is quite impossible. However, the verification task can be considerably simplified, if each refinement step and its local implications are verified separately. One main idea of the Formal System Design (ForSyDe) methodology is to break the design process into smaller refinement steps that can be individually understood, analyzed and verified. The topic of this thesis is the verification of refinement steps in ForSyDe and similar methodologies. It proposes verification attributes attached to each non-semantic-preserving transformation. The attributes include critical properties that have to be preserved by transformations. Verification properties are defined as temporal logic expressions and the actual verification is done with the SMV model checker. The mapping rules of ForSyDe models to the SMV language are provided. In addition to properties, the verification attributes include abstraction techniques to reduce the size of the models and to make verification tractable. For computation refinements, the author defines the polynomial abstraction technique, that addresses verification of DSP applications at a high abstraction level. Due to the size of models, predefined properties target only the local correctness of refined design blocks and the global influence has to be examined separately. In order to compensate the influence of temporal refinements, the thesis provides two novel synchronization techniques. The proposed verification and synchronization techniques have been applied to relevant applications in the computation area and to communication protocols.
  •  
3.
  • Zhu, Jun, 1976- (författare)
  • Energy and Design Cost Efficiency for Streaming Applications on Systems-on-Chip
  • 2009
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • With the increasing capacity of today's integrated circuits, a number ofheterogeneous  system-on-chip (SoC)  architectures  in embedded  systemshave been proposed. In order to achieve energy and design cost efficientstreaming applications  on these  systems, new design  space explorationframeworks  and  performance  analysis  approaches are  required.   Thisthesis  considers three state-of-the-art  SoCs architectures,  i.e., themulti-processor SoCs (MPSoCs)  with network-on-chip (NoC) communication,the hybrid CPU/FPGA architectures, and the run-time reconfigurable (RTR)FPGAs.  The main topic of the  author?s research is to model and capturethe  application  scheduling,  architecture  customization,  and  bufferdimensioning  problems, according to  the real-time  requirement.  Sincethese  problems  are NP-complete,  heuristic  algorithms and  constraintprogramming solver are used to compute a solution.For  NoC  communication  based  MPSoCs,  an  approach  to  optimize  thereal-time    streaming    applications    with   customized    processorvoltage-frequency levels and memory  sizes is presented. A multi-clockedsynchronous  model  of  computation   (MoC)  framework  is  proposed  inheterogeneous  timing analysis and  energy estimation.   Using heuristicsearching  (i.e., greedy  and  taboo search),  the  experiments show  anenergy reduction (up to 21%)  without any loss in application throughputcompared with an ad-hoc approach.On hybrid CPU/FPGA architectures,  the buffer minimization scheduling ofreal-time streaming  applications is addressed.  Based  on event models,the  problem  has  been  formalized  decoratively  as  constraint  basescheduling,  and  solved  by  public domain  constraint  solver  Gecode.Compared  with  traditional  PAPS  method,  the  proposed  method  needssignificantly smaller  buffers (2.4%  of PAPS in  the best  case), whilehigh throughput guarantees can still be achieved.Furthermore, a  novel compile-time analysis approach  based on iterativetiming  phases is  proposed  for run-time  reconfigurations in  adaptivereal-time   streaming   applications  on   RTR   FPGAs.   Finally,   thereconfigurations analysis and design trade-offs analysis capabilities ofthe proposed  framework have been  exemplified with experiments  on bothexample and industrial applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy