SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jaric I) "

Sökning: WFRF:(Jaric I)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jaric, I, et al. (författare)
  • The rearing environment persistently modulates mouse phenotypes from the molecular to the behavioural level
  • 2022
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1545-7885. ; 20:10, s. e3001837-
  • Tidskriftsartikel (refereegranskat)abstract
    • The phenotype of an organism results from its genotype and the influence of the environment throughout development. Even when using animals of the same genotype, independent studies may test animals of different phenotypes, resulting in poor replicability due to genotype-by-environment interactions. Thus, genetically defined strains of mice may respond differently to experimental treatments depending on their rearing environment. However, the extent of such phenotypic plasticity and its implications for the replicability of research findings have remained unknown. Here, we examined the extent to which common environmental differences between animal facilities modulate the phenotype of genetically homogeneous (inbred) mice. We conducted a comprehensive multicentre study, whereby inbred C57BL/6J mice from a single breeding cohort were allocated to and reared in 5 different animal facilities throughout early life and adolescence, before being transported to a single test laboratory. We found persistent effects of the rearing facility on the composition and heterogeneity of the gut microbial community. These effects were paralleled by persistent differences in body weight and in the behavioural phenotype of the mice. Furthermore, we show that environmental variation among animal facilities is strong enough to influence epigenetic patterns in neurons at the level of chromatin organisation. We detected changes in chromatin organisation in the regulatory regions of genes involved in nucleosome assembly, neuronal differentiation, synaptic plasticity, and regulation of behaviour. Our findings demonstrate that common environmental differences between animal facilities may produce facility-specific phenotypes, from the molecular to the behavioural level. Furthermore, they highlight an important limitation of inferences from single-laboratory studies and thus argue that study designs should take environmental background into account to increase the robustness and replicability of findings.
  •  
2.
  • Lennox, Robert J., et al. (författare)
  • Electronic tagging and tracking aquatic animals to understand a world increasingly shaped by a changing climate and extreme weather events
  • 2024
  • Ingår i: Canadian Journal of Fisheries and Aquatic Sciences. - 0706-652X .- 1205-7533. ; 81:3, s. 326-339
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite great promise for understanding the impacts and extent of climate change and extreme weather events on aquatic animals, their species, and ecological communities, it is surprising that electronic tagging and tracking tools, like biotelemetry and biologging, have not been extensively used to understand climate change or develop and evaluate potential interventions that may help adapt to its impacts. In this review, we provide an overview of methodologies and study designs that leverage available electronic tracking tools to investigate aspects of climate change and extreme weather events in aquatic ecosystems. Key interventions to protect aquatic life from the impacts of climate change, including habitat restoration, protected areas, conservation translocations, mitigations against interactive effects of climate change, and simulation of future scenarios, can all be greatly facilitated by using electronic tagging and tracking. We anticipate that adopting animal tracking to identify phenotypes, species, or ecosystems that are vulnerable or resilient to climate change will help in applying management interventions such as fisheries management, habitat restoration, invasive species control, or enhancement measures that prevent extinction and strengthen the resilience of communities against the most damaging effects of climate change. Given the scalability and increasing accessibility of animal tracking tools for researchers, tracking individual organisms will hopefully also facilitate research into effective solutions and interventions against the most extreme and acute impacts on species, populations, and ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy