SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jaskot A. E.) "

Sökning: WFRF:(Jaskot A. E.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marques-Chaves, R., et al. (författare)
  • No correlation of the Lyman continuum escape fraction with spectral hardness
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Tidskriftsartikel (refereegranskat)abstract
    • The properties that govern the production and escape of hydrogen-ionizing photons (Lyman continuum, LyC; with energies > 13.6 eV) in star-forming galaxies are still poorly understood, but they are key to identifying and characterizing the sources that reionized the Universe. Here we empirically explore the relation between the hardness of ionizing radiation and the LyC leakage in a large sample of low-z star-forming galaxies from the recent Hubble Space Telescope Low-z Lyman Continuum Survey. Using Sloan Digital Sky Survey stacks and deep X-shooter observations, we investigate the hardness of the ionizing spectra (QHe+/QH) between 54.4 eV (He+) and 13.6 eV (H) from the optical recombination lines He II 4686 Å and Hβ 4861 Å for galaxies with LyC escape fractions spanning a wide range, fesc(LyC) ≃ 0−90%. We find that the observed intensity of He II/Hβ is primarily driven by variations in the metallicity, but is not correlated with LyC leakage. Both very strong (esc(LyC)> ≃ 0.5) and nonleakers (esc(LyC)> ≃ 0) present similar observed intensities of He II and Hβ at comparable metallicity, between ≃0.01 and ≃0.02 for 12 + log(O/H)> 8.0 and < 8.0, respectively. Our results demonstrate that QHe+/QH does not correlate with fesc(LyC), which implies that strong LyC emitters do not show harder ionizing spectra than nonleakers at similar metallicity.
  •  
2.
  • Amorín, R. O., et al. (författare)
  • Ubiquitous broad-line emission and the relation between ionized gas outflows and Lyman continuum escape in Green Pea galaxies
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 682
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observational evidence of highly turbulent ionized gas kinematics in a sample of 20 Lyman continuum (LyC) emitters (LCEs) at low redshift (z ∼ 0.3). Detailed Gaussian modeling of optical emission line profiles in high-dispersion spectra consistently shows that both bright recombination and collisionally excited lines can be fitted as one or two narrow components with intrinsic velocity dispersion of σ ∼ 40 − 100 km s−1, in addition to a broader component with σ ∼ 100 − 300 km s−1, which contributes up to ∼40% of the total flux and is preferentially blueshifted from the systemic velocity. We interpret the narrow emission as highly ionized gas close to the young massive star clusters and the broader emission as a signpost of unresolved ionized outflows, resulting from massive stars and supernova feedback. We find a significant correlation between the width of the broad emission and the LyC escape fraction, with strong LCEs exhibiting more complex and broader line profiles than galaxies with weaker or undetected LyC emission. We provide new observational evidence supporting predictions from models and simulations; our findings suggest that gas turbulence and outflows resulting from strong radiative and mechanical feedback play a key role in clearing channels through which LyC photons escape from galaxies. We propose that the detection of blueshifted broad emission in the nebular lines of compact extreme emission-line galaxies can provide a new indirect diagnostic of Lyman photon escape, which could be useful to identify potential LyC leakers in the epoch of reionization with the JWST.
  •  
3.
  • Hu, Weida, et al. (författare)
  • CLASSY VII Lyα Profiles : The Structure and Kinematics of Neutral Gas and Implications for LyC Escape in Reionization-era Analogs
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 956:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Lyα line profiles are a powerful probe of interstellar medium (ISM) structure, outflow speed, and Lyman-continuum escape fraction. In this paper, we present the Lyα line profiles of the Cosmic Origins Spectrograph (COS) Legacy Archive Spectroscopic SurveY, a sample rich in spectroscopic analogs of reionization-era galaxies. A large fraction of the spectra show a complex profile, consisting of a double-peaked Lyα emission profile in the bottom of a damped, Lyα absorption trough. Such profiles reveal an inhomogeneous ISM. We successfully fit the damped Lyα absorption and the Lyα emission profiles separately, but with complementary covering factors, a surprising result because this approach requires no Lyα exchange between high-NH i and low-NH i paths. The combined distribution of column densities is qualitatively similar to the bimodal distributions observed in numerical simulations. We find an inverse relation between Lyα peak separation and the [O iii]/[O ii] flux ratio, confirming that the covering fraction of Lyman-continuum-thin sightlines increases as the Lyα peak separation decreases. We combine measurements of Lyα peak separation and Lyα red peak asymmetry in a diagnostic diagram, which identifies six Lyman-continuum leakers in the COS Legacy Archive Spectrocopy SurveY (CLASSY) sample. We find a strong correlation between the Lyα trough velocity and the outflow velocity measured from interstellar absorption lines. We argue that greater vignetting of the blueshifted Lyα peak, relative to the redshifted peak, is the source of the well-known discrepancy between shell-model parameters and directly measured outflow properties. The CLASSY sample illustrates how scattering of Lyα photons outside the spectroscopic aperture reshapes Lyα profiles because the distances to these compact starbursts span a large range.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy