SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jaspars Marcel) "

Sökning: WFRF:(Jaspars Marcel)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Clark, H. Poppy, et al. (författare)
  • New interactive machine learning tool for marine image analysis
  • 2024
  • Ingår i: ROYAL SOCIETY OPEN SCIENCE. - 2054-5703. ; 11:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Advancing imaging technologies are drastically increasing the rate of marine video and image data collection. Often these datasets are not analysed to their full potential as extracting information for multiple species is incredibly time-consuming. This study demonstrates the capability of the open-source interactive machine learning tool, RootPainter, to analyse large marine image datasets quickly and accurately. The ability of RootPainter to extract the presence and surface area of the cold-water coral reef associate sponge species, Mycale lingua, was tested in two datasets: 18 346 time-lapse images and 1420 remotely operated vehicle video frames. New corrective annotation metrics integrated with RootPainter allow objective assessment of when to stop model training and reduce the need for manual model validation. Three highly accurate M. lingua models were created using RootPainter, with an average dice score of 0.94 +/- 0.06. Transfer learning aided the production of two of the models, increasing analysis efficiency from 6 to 16 times faster than manual annotation for time-lapse images. Surface area measurements were extracted from both datasets allowing future investigation of sponge behaviours and distributions. Moving forward, interactive machine learning tools and model sharing could dramatically increase image analysis speeds, collaborative research and our understanding of spatiotemporal patterns in biodiversity.
  •  
3.
  • Jarmusch, Scott A., et al. (författare)
  • Cutting the Gordian knot : early and complete amino acid sequence confirmation of class II lasso peptides by HCD fragmentation
  • 2020
  • Ingår i: Journal of antibiotics (Tokyo. 1968). - : Springer Science and Business Media LLC. - 0021-8820 .- 1881-1469. ; 73:11, s. 772-779
  • Tidskriftsartikel (refereegranskat)abstract
    • Lasso peptides are a diverse class of ribosomally synthesized and post-translationally modified peptides (RiPPs). Their proteolytic and thermal stability alongside their growing potential as therapeutics has increased attention to these antimicrobial peptides. With the advent of genome mining, the discovery of RiPPs allows for the accurate prediction of putatively encoded structures, however, MSn experiments only provide partial sequence confirmation, therefore 2D NMR experiments are necessary for characterisation. Multiple MS/MS techniques were applied to two structurally characterized lasso peptides, huascopeptin and leepeptin, and one uncharacterized lasso peptide, citrulassin C, which was not isolable in sufficient quantity for NMR analysis. We have shown that MS2 can be used to elucidate the full amino acid sequences previously predicted with genome mining for this compound class. HCD was able to open the macrocycles and fragment the newly opened linear peptides, confirming the complete amino acid sequences of the characterised lasso peptides. In addition, to determine if this technique could be applied at the earliest stages of the isolation process, we targeted a lasso peptide found by genome mining, citrulassin C, and were able to fully elucidate the amino acid sequence using only MS2 from a semi-crude extract of Streptomyces huasconensis HST28T.
  •  
4.
  • Jarmusch, Scott A., et al. (författare)
  • Iron-meditated fungal starvation by lupine rhizosphere-associated and extremotolerant Streptomyces sp. S29 desferrioxamine production
  • 2021
  • Ingår i: Molecular Omics. - : Royal Society of Chemistry. - 2515-4184. ; 17:1, s. 95-107
  • Tidskriftsartikel (refereegranskat)abstract
    • Siderophores are iron-chelating compounds that aid iron uptake, one of the key strategies for microorganisms to carve out ecological niches in microbially diverse environments. Desferrioxamines are the principal siderophores produced by Streptomyces spp. Their biosynthesis has been well studied and as a consequence, the chemical potential of the pathway continues to expand. With all of this in mind, our study aimed to explore extremotolerant and lupine rhizosphere-derived Streptomyces sp. S29 for its potential antifungal capabilities. Cocultivation of isolate S29 was carried out with Aspergillus niger and Botrytis cinerea, both costly fungal phytopathogens in the wine industry, to simulate their interaction within the rhizosphere. The results indicate that not only is Streptomyces sp. S29 extraordinary at producing hydroxamate siderophores but uses siderophore production as a means to 'starve' the fungi of iron. High resolution LC-MS/MS followed by GNPS molecular networking was used to observe the datasets for desferrioxamines and guided structure elucidation of new desferrioxamine analogues. Comparing the new chemistry, using tools like molecular networking and MS2LDA, with the known biosynthesis, we show that the chemical potential of the desferrioxamine pathway has further room for exploration.
  •  
5.
  • Muhammad, Taj, et al. (författare)
  • Exploring the limits of cyanobactin macrocyclase PatGmac : Cyclization of PawS-derived peptide sunflower trypsin inhibitor-1 and cyclotide kalata B1
  • 2023
  • Ingår i: Journal of Natural Products. - : American Chemical Society (ACS). - 0974-5211 .- 0163-3864 .- 1520-6025. ; 86:3, s. 566-573
  • Tidskriftsartikel (refereegranskat)abstract
    • The subtilisin-like macrocyclase PatGmac is produced by the marine cyanobacterium Prochloron didemni. This enzyme is involved in the last step of the biosynthesis of patellamides, a cyanobactin type of ribosomally expressed and post-translationally modified cyclic peptides. PatGmac recognizes, cleaves, and cyclizes precursor peptides after a specific recognition motif comprised of a C-terminal tail with the sequence motif -AYDG. The result is the native macrocyclic patellamide, which has eight amino acid residues. Macrocyclase activity can be exploited by incorporating that motif in other short linear peptide precursors, which then are formed into head-to-tail cyclized peptides. Here, we explore the possibility of using PatGmac in the cyclization of peptides larger than the patellamides, namely, the PawS-derived peptide sunflower trypsin inhibitor-1 (SFTI-1) and the cyclotide kalata B1. These peptides fall under two distinct families of disulfide constrained macrocyclic plant peptides. They are both implicated as scaffolds for drug design due to their structures and unusual stability. We show that PatGmac can be used to efficiently cyclize the 14 amino acid residue long SFTI-1, but less so the 29 amino acid residue long kalata B1.
  •  
6.
  • Sigwart, Julia D., et al. (författare)
  • Unlocking the potential of marine biodiscovery
  • 2021
  • Ingår i: Natural product reports (Print). - : Royal Society of Chemistry (RSC). - 0265-0568 .- 1460-4752. ; 38:7, s. 1235-1242
  • Forskningsöversikt (refereegranskat)abstract
    • The tremendous diversity of life in the ocean has proven to be a rich source of inspiration for drug discovery, with success rates for marine natural products up to 4 times higher than other naturally derived compounds. Yet the marine biodiscovery pipeline is characterized by chronic underfunding, bottlenecks and, ultimately, untapped potential. For instance, a lack of taxonomic capacity means that, on average, 20 years pass between the discovery of new organisms and the formal publication of scientific names, a prerequisite to proceed with detecting and isolating promising bioactive metabolites. The need for edge research that can spur novel lines of discovery and lengthy high-risk drug discovery processes, are poorly matched with research grant cycles. Here we propose five concrete pathways to broaden the biodiscovery pipeline and open the social and economic potential of the ocean genome for global benefit: (1) investing in fundamental research, even when the links to industry are not immediately apparent; (2) cultivating equitable collaborations between academia and industry that share both risks and benefits for these foundational research stages; (3) providing new opportunities for early-career researchers and under-represented groups to engage in high-risk research without risking their careers; (4) sharing data with global networks; and (5) protecting genetic diversity at its source through strong conservation efforts. The treasures of the ocean have provided fundamental breakthroughs in human health and still remain under-utilised for human benefit, yet that potential may be lost if we allow the biodiscovery pipeline to become blocked in a search for quick-fix solutions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy