SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jawitz J. W.) "

Sökning: WFRF:(Jawitz J. W.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Thorslund, Josefin, et al. (författare)
  • Wetlands as large-scale nature-based solutions : Status and challenges for research, engineering and management
  • 2017
  • Ingår i: Ecological Engineering. - : Elsevier BV. - 0925-8574 .- 1872-6992. ; 108, s. 489-497
  • Tidskriftsartikel (refereegranskat)abstract
    • Wetlands are often considered as nature-based solutions that can provide a multitude of services of great social, economic and environmental value to humankind. Changes in land-use, water-use and climate can all impact wetland functions and services. These changes occur at scales extending well beyond the local scale of an individual wetland. However, in practical applications, engineering and management decisions usually focus on individual wetland projects and local site conditions. Here, we systematically investigate if and to what extent research has addressed the large-scale dynamics of landscape systems with multiple wetlands, hereafter referred to as wetlandscapes, which are likely to be relevant for understanding impacts of regional to global change. Although knowledge in many cases is still limited, evidence suggests that the aggregated effects of multiple wetlands in the landscape can differ considerably from the functions observed at individual wetland scales. This applies to provisioning of ecosystem services such as coastal protection, biodiversity support, groundwater level and soil moisture regulation, flood regulation and contaminant retention. We show that parallel and circular flow-paths, through which wetlands are interconnected in the landscape, may largely control such scale-function differences. We suggest ways forward for addressing the mismatch between the scales at which changes take place and the scale at which observations and implementation are currently made. These suggestions can help bridge gaps between researchers and engineers, which is critical for improving wetland function-effect predictability and management.
  •  
3.
  •  
4.
  • Basu, N. B., et al. (författare)
  • Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity
  • 2010
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 37:L23404
  • Tidskriftsartikel (refereegranskat)abstract
    • Complexity of heterogeneous catchments poses challenges in predicting biogeochemical responses to human alterations and stochastic hydro‐climatic drivers. Human interferences and climate change may have contributed to the demise of hydrologic stationarity, but our synthesis of a large body of observational data suggests that anthropogenic impacts have also resulted in the emergence of effective biogeochemical stationarity in managed catchments. Long‐term monitoring data from the Mississippi‐Atchafalaya River Basin (MARB) and the Baltic Sea Drainage Basin (BSDB) reveal that inter‐annual variations in loads (LT) for total‐N (TN) and total‐P (TP), exported from a catchment are dominantly controlled by discharge (QT) leading inevitably to temporal invariance of the annual, flow‐weighted concentration, = (LT/QT). Emergence of this consistent pattern across diverse managed catchments is attributed to the anthropogenic legacy of accumulated nutrient sources generating memory, similar to ubiquitously present sources for geogenic constituents that also exhibit a linear LT‐QT relationship. These responses are characteristic of transport‐limited systems. In contrast, in the absence of legacy sources in less‐managed catchments, values were highly variable and supply limited. We offer a theoretical explanation for the observed patterns at the event scale, and extend it to consider the stochastic nature of rainfall/flow patterns at annual scales. Our analysis suggests that: (1) expected inter‐annual variations in LT can be robustly predicted given discharge variations arising from hydro‐climatic or anthropogenic forcing, and (2) water‐quality problems in receiving inland and coastal waters would persist until the accumulated storages of nutrients have been substantially depleted. The finding has notable implications on catchment management to mitigate adverse water‐quality impacts, and on acceleration of global biogeochemical cycles.
  •  
5.
  • Destouni, Georgia, et al. (författare)
  • Hydro-Biogeochemical and Environmental-Management Functions of Wetland Networks in Landscapes
  • 2012
  • Ingår i: 9th INTECOL International Wetlands Conference, Wetlands in a Complex World. ; , s. 915-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • A main application goal of ecohydrological science is to amplify opportunities of achieving water quality improvements, biodiversity enhancements and sustainable development, by improved understanding and use of ecosystem properties as a management tool. This paper draws on and synthesizes main result implications for the function and possible enhanced use of wetland networks in the landscape as such a tool, from a series of hydro-biogeochemical and environmental economics studies of nutrient/pollutant loading and abatement in different Swedish hydrological catchments. Results show large potential of wetland networks to reduce the cost of abating nutrient and metal loads within and from hydrological catchments, and emphasize some main research questions for further investigations of actual possibilities to realize this potential. The questions regard in particular the ability of wetland networks to extend the travel times and reduce the uncertainty of hydrological nutrient/pollutant transport through catchments.The paper further presents and discusses some main joint conclusions of the participants in a recently held International Workshop on Ecohydrology and Integrated Water Resource Management (1) at the Navarino Environmental Observatory in Messinia, Greece (2), regarding essential goals for collaborative international efforts in wetland network research. The goals include to investigate on different spatiotemporal scales and in different world regions: a) the dynamics of natural and managed wetland networks across a gradient of different climate, human disturbance, energy and organization conditions; b) the reciprocal interactions between wetland networks and associated hydrological catchments; c) how climate change and different human activities in the wetland network catchments influence these interactions (in b) and generally the ecohydrology of individual wetlands and the whole wetland networks; and d) the ecosystem services provided by networks of wetlands.
  •  
6.
  • Jaramillo, Fernando, et al. (författare)
  • Priorities and Interactions of Sustainable Development Goals (SDGs) with Focus on Wetlands
  • 2019
  • Ingår i: Water. - : MDPI. - 2073-4441. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Wetlands are often vital physical and social components of a country’s natural capital, as well as providers of ecosystem services to local and national communities. We performed a network analysis to prioritize Sustainable Development Goal (SDG) targets for sustainable development in iconic wetlands and wetlandscapes around the world. The analysis was based on the information and perceptions on 45 wetlandscapes worldwide by 49 wetland researchers of the Global Wetland Ecohydrological Network (GWEN). We identified three 2030 Agenda targets of high priority across the wetlandscapes needed to achieve sustainable development: Target 6.3—“Improve water quality”; 2.4—“Sustainable food production”; and 12.2—“Sustainable management of resources”. Moreover, we found specific feedback mechanisms and synergies between SDG targets in the context of wetlands. The most consistent reinforcing interactions were the influence of Target 12.2 on 8.4—“Efficient resource consumption”; and that of Target 6.3 on 12.2. The wetlandscapes could be differentiated in four bundles of distinctive priority SDG-targets: “Basic human needs”, “Sustainable tourism”, “Environmental impact in urban wetlands”, and “Improving and conserving environment”. In general, we find that the SDG groups, targets, and interactions stress that maintaining good water quality and a “wise use” of wetlandscapes are vital to attaining sustainable development within these sensitive ecosystems.
  •  
7.
  • Thorslund, Josefin, et al. (författare)
  • Solute evidence for hydrological connectivity of geographically isolated wetlands
  • 2018
  • Ingår i: Land Degradation and Development. - : Wiley. - 1085-3278 .- 1099-145X. ; 29:11, s. 3954-3962
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrological connectivity describes the water-mediated transfer of mass, energy, and organisms between landscape elements and is the foundation for understanding how individual elements such as wetlands and streams integrate to support ecosystem services and nature-based solutions in the landscape. Hydrological connectivity of geographically isolated wetlands (GIWs)-that is, wetlands without persistent surface water connections-is particularly poorly understood. To better understand GIW hydrological connectivity, we use a novel chloride mass-balance approach to quantify the local runoff generation (defined as precipitation minus evapotranspiration, assuming negligible long-term water storage) for 260 GIW subcatchments across North America. To evaluate hydrological connectivity, we compare the estimated local runoff from GIW subcatchments with the catchment-average runoff. These comparisons provide three novel insights regarding the magnitude and variability of GIW hydrological connectivity. First, across 10 study regions, GIW subcatchments generate runoff at 120% of the mean catchment rate, implying they are well-connected elements of the larger hydrologic landscape. Second, there is substantial heterogeneity in runoff generation among GIW subcatchments, which may enable support for a wide array of ecosystem functions and services. Finally, observed heterogeneity in runoff generation was largely uncorrelated to simple linear geographic predictors, indicating that GIW landscape position cannot reliably predict hydrological connectivity. In stark contrast to a priori legal assumptions that GIWs exhibit low or no hydrological connectivity, our results suggest that GIW subcatchments are active landscape features in runoff generation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy