SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jayachandran M) "

Sökning: WFRF:(Jayachandran M)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kim, Dae-Kyum, et al. (författare)
  • EVpedia: A Community Web Portal for Extracellular Vesicles Research
  • 2015
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 31:6, s. 933-939
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. Results: We present an improved version of EVpedia, a public database for EVs research. This community web portal contains a database of publications and vesicular components, identification of orthologous vesicular components, bioinformatic tools and a personalized function. EVpedia includes 6879 publications, 172 080 vesicular components from 263 high-throughput datasets, and has been accessed more than 65 000 times from more than 750 cities. In addition, about 350 members from 73 international research groups have participated in developing EVpedia. This free web-based database might serve as a useful resource to stimulate the emerging field of EV research.
  •  
3.
  • Gilani, Sarwat I, et al. (författare)
  • Urinary Extracellular Vesicles of Podocyte Origin and Renal Injury in Preeclampsia
  • 2017
  • Ingår i: Journal of the American Society of Nephrology: JASN. - 1533-3450. ; 28:11, s. 3363-3372
  • Tidskriftsartikel (refereegranskat)abstract
    • Renal histologic expression of the podocyte-specific protein, nephrin, but not podocin, is reduced in preeclamptic compared with normotensive pregnancies. We hypothesized that renal expression of podocyte-specific proteins would be reflected in urinary extracellular vesicles (EVs) of podocyte origin and accompanied by increased urinary soluble nephrin levels (nephrinuria) in preeclampsia. We further postulated that podocyte injury and attendant formation of EVs are related mechanistically to cellfree fetal hemoglobin (HbF) in maternal plasma. Our study population included preeclamptic (n=49) and normotensive (n=42) pregnant women recruited at delivery. Plasma measurements included HbF concentrations and concentrations of the endogenous chelators haptoglobin, hemopexin, and α1- microglobulin. We assessed concentrations of urinary EVs containing immunologically detectable podocyte-specific proteins by digital flow cytometry and measured nephrinuria by ELISA. The mechanistic role of HbF in podocyte injury was studied in pregnant rabbits. Compared with urine from women with normotensive pregnancies, urine from women with preeclamptic pregnancies contained a high ratio of podocin-positive to nephrin-positive urinary EVs (podocin(+) EVs-to-nephrin(+) EVs ratio) and increased nephrinuria, both of which correlated with proteinuria. Plasma levels of hemopexin, which were decreased in women with preeclampsia, negatively correlated with proteinuria, urinary podocin(+) EVs-to-nephrin(+) EVs ratio, and nephrinuria. Administration of HbF to pregnant rabbits increased the number of urinary EVs of podocyte origin. These findings provide evidence that urinary EVs are reflective of preeclampsia-related altered podocyte protein expression. Furthermore, renal injury in preeclampsia associated with an elevated urinary podocin(+) EVs-to-nephrin(+) EVs ratio and may be mediated by prolonged exposure to cellfree HbF.
  •  
4.
  • Pablos, Isabel, et al. (författare)
  • Mechanistic insights into COVID-19 by global analysis of the SARS-CoV-2 3CL(pro) substrate degradome
  • 2021
  • Ingår i: Cell Reports. - : Cell Press. - 2211-1247. ; 37:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The main viral protease (3CL(pro)) is indispensable for SARS-CoV-2 replication. We delineate the human protein substrate landscape of 3CL(pro) by TAILS substrate-targeted N-terminomics. We identify more than 100 substrates in human lung and kidney cells supported by analyses of SARS-CoV-2-infected cells. Enzyme kinetics and molecular docking simulations of 3CL(pro) engaging substrates reveal how noncanonical cleavage sites, which diverge from SARS-CoV, guide substrate specificity. Cleaving the interactors of essential effector proteins, effectively stranding them from their binding partners, amplifies the consequences of proteolysis. We show that 3CL(pro) targets the Hippo pathway, including inactivation of MAP4K5, and key effectors of transcription, mRNA processing, and translation. We demonstrate that Spike glycoprotein directly binds galectin-8, with galectin-8 cleavage disengaging CALCOCO2/NDP52 to decouple antiviral-autophagy. Indeed, in post-mortem COVID-19 lung samples, NDP52 rarely colocalizes with galectin-8, unlike in healthy lungs. The 3CL(pro) substrate degradome establishes a foundational substrate atlas to accelerate exploration of SARSCoV-2 pathology and drug design.
  •  
5.
  • Elsayed, Mohamed Hammad, et al. (författare)
  • Hydrophobic and Hydrophilic Conjugated Polymer Dots as Binary Photocatalysts for Enhanced Visible-Light-Driven Hydrogen Evolution through Forster Resonance Energy Transfer
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:47, s. 56554-56565
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic semiconducting polymers exhibited promising photocatalytic behavior for hydrogen (H-2) evolution, especially when prepared in the form of polymer dots (Pdots). However, the Pdot structures were formed using common nonconjugated amphiphilic polymers, which have a negative effect on charge transfer between photocatalysts and reactants and are unable to participate in the photocatalytic reaction. This study presents a new strategy for constructing binary Pdot photocatalysts by replacing the nonconjugated amphiphilic polymer typically employed in the preparation of polymer nanoparticles (Pdots) with a low-molecular-weight conjugated polyelectrolyte. The as-prepared polyelectrolyte/hydrophobic polymer-based binary Pdots truly enhance the electron transfer between the Pt cocatalyst and the polymer photocatalyst with good water dispersibility. Moreover, unlike the nonconjugated amphiphilic polymer, the photophysics and mechanism of this photocatalytic system through time-correlated single-photon counting (TCSPC) and transient absorption (TA) measurements confirmed the Forster resonance energy transfer (FRET) between the polyelectrolyte as a donor and the hydrophobic polymer as an acceptor. As a result, the designated binary Pdot photocatalysts significantly enhanced the hydrogen evolution rate (HER) of 43 900 mu mol g(-1) h(-1) (63.5 mu mol h(-1), at 420 nm) for PTTPA/PFTBTA Pdots under visible-light irradiation.
  •  
6.
  • Elsayed, Mohamed Hammad, et al. (författare)
  • Visible-light-driven hydrogen evolution using nitrogen-doped carbon quantum dot-implanted polymer dots as metal-free photocatalysts
  • 2021
  • Ingår i: Applied Catalysis B: Environmental. - : Elsevier BV. - 0926-3373. ; 283
  • Tidskriftsartikel (refereegranskat)abstract
    • Given the photocatalytic properties of semiconducting polymers and carbon quantum dots (CQDs), we report a new structure for a metal-free photocatalytic system with a promising efficiency for hydrogen production through the combination of an organic semiconducting polymer (PFTBTA) and N-doped carbon quantum dots (NCQDs) covered by PS-PEGCOOH to produce heterostructured photocatalysts in the form of polymer dots (Pdots). This design could provide strong interactions between the two materials owing to the space confinement effect in nanometer-sized Pdots. Small particle size NCQDs are easy to insert inside the Pdot, which leads to an increase in the stability of the Pdot structure and enhances the hydrogen evolution rate by approximately 5-fold over that of pure PFTBTA Pdots. The photophysics and the mechanism behind the catalytic activity of our design are investigated by transient absorption measurement, demonstrating the role of NCQDs to enhance the charge separation and the photocatalytic efficiency of the PFTBTA Pdot.
  •  
7.
  • Lin, Wei Cheng, et al. (författare)
  • Effect of energy bandgap and sacrificial agents of cyclopentadithiophene-based polymers for enhanced photocatalytic hydrogen evolution
  • 2021
  • Ingår i: Applied Catalysis B: Environmental. - : Elsevier BV. - 0926-3373. ; 298
  • Tidskriftsartikel (refereegranskat)abstract
    • A library of donor-acceptor system consisting of cyclopentadithiophene-based polymer photocatalysts have been designed and synthesized. Among all photocatalysts, the active PCPDTBSO achieved hydrogen evolution rates of 24.6 mmol h–1 g–1 with apparent quantum yields of 8.7 % at 500 nm. More importantly, combined the results of photocatalytic efficiency, apparent quantum yield, the time-resolved fluorescence decay spectra, the steady-state photoluminescence spectra, and the transient absorption spectroscopy, and the oxidation potentials of sacrificial donors and protons reduction potentials in different pH values, we confirmed the concept that ascorbic acid is a suitable sacrificial donor for narrow bandgap polymers and triethylamine is a suitable sacrificial donor for wide bandgap polymers owing to the existence of the optimal thermodynamic driving force. We believed this study would be advantageous for the selection of photocatalysts and sacrificial donors for hydrogen production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy