SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jelse Kristian) "

Sökning: WFRF:(Jelse Kristian)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alvfors, Per, 1954-, et al. (författare)
  • Research and development challenges for Swedish biofuel actors – three illustrative examples : Improvement potential discussed in the context of Well-to-Tank analyses
  • 2010
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Currently biofuels have strong political support, both in the EU and Sweden. The EU has, for example, set a target for the use of renewable fuels in the transportation sector stating that all EU member states should use 10% renewable fuels for transport by 2020. Fulfilling this ambition will lead to an enormous market for biofuels during the coming decade. To avoid increasing production of biofuels based on agriculture crops that require considerable use of arable area, focus is now to move towards more advanced second generation (2G) biofuels that can be produced from biomass feedstocks associated with a more efficient land use. Climate benefits and greenhouse gas (GHG) balances are aspects often discussed in conjunction with sustainability and biofuels. The total GHG emissions associated with production and usage of biofuels depend on the entire fuel production chain, mainly the agriculture or forestry feedstock systems and the manufacturing process. To compare different biofuel production pathways it is essential to conduct an environmental assessment using the well-to-tank (WTT) analysis methodology. In Sweden the conditions for biomass production are favourable and we have promising second generation biofuels technologies that are currently in the demonstration phase. In this study we have chosen to focus on cellulose based ethanol, methane from gasification of solid wood as well as DME from gasification of black liquor, with the purpose of identifying research and development potentials that may result in improvements in the WTT emission values. The main objective of this study is thus to identify research and development challenges for Swedish biofuel actors based on literature studies as well as discussions with the the researchers themselves. We have also discussed improvement potentials for the agriculture and forestry part of the WTT chain. The aim of this study is to, in the context of WTT analyses, (i) increase knowledge about the complexity of biofuel production, (ii) identify and discuss improvement potentials, regarding energy efficiency and GHG emissions, for three biofuel production cases, as well as (iii) identify and discuss improvement potentials regarding biomass supply, including agriculture/forestry. The scope of the study is limited to discussing the technologies, system aspects and climate impacts associated with the production stage. Aspects such as the influence on biodiversity and other environmental and social parameters fall beyond the scope of this study. We find that improvement potentials for emissions reductions within the agriculture/forestry part of the WTT chain include changing the use of diesel to low-CO2-emitting fuels, changing to more fuel-efficient tractors, more efficient cultivation and manufacture of fertilizers (commercial nitrogen fertilizer can be produced in plants which have nitrous oxide gas cleaning) as well as improved fertilization strategies (more precise nitrogen application during the cropping season). Furthermore, the cultivation of annual feedstock crops could be avoided on land rich in carbon, such as peat soils and new agriculture systems could be introduced that lower the demand for ploughing and harrowing. Other options for improving the WTT emission values includes introducing new types of crops, such as wheat with higher content of starch or willow with a higher content of cellulose. From the case study on lignocellulosic ethanol we find that 2G ethanol, with co-production of biogas, electricity, heat and/or wood pellet, has a promising role to play in the development of sustainable biofuel production systems. Depending on available raw materials, heat sinks, demand for biogas as vehicle fuel and existing 1G ethanol plants suitable for integration, 2G ethanol production systems may be designed differently to optimize the economic conditions and maximize profitability. However, the complexity connected to the development of the most optimal production systems require improved knowledge and involvement of several actors from different competence areas, such as chemical and biochemical engineering, process design and integration and energy and environmental systems analysis, which may be a potential barrier.
  •  
2.
  • Alvfors, Per, et al. (författare)
  • Research and development challenges for Swedish biofuel actors – three illustrative examples
  • 2010
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Currently biofuels have strong political support, both in the EU and Sweden. The EU has, for example, set a target for the use of renewable fuels in the transportation sector stating that all EU member states should use 10% renewable fuels for transport by 2020. Fulfilling this ambition will lead to an enormous market for biofuels during the coming decade. To avoid increasing production of biofuels based on agriculture crops that require considerable use of arable area, focus is now to move towards more advanced second generation (2G) biofuels that can be produced from biomass feedstocks associated with a more efficient land use.Climate benefits and greenhouse gas (GHG) balances are aspects often discussed in conjunction with sustainability and biofuels. The total GHG emissions associated with production and usage of biofuels depend on the entire fuel production chain, mainly the agriculture or forestry feedstock systems and the manufacturing process. To compare different biofuel production pathways it is essential to conduct an environmental assessment using the well-to-tank (WTT) analysis methodology. In Sweden the conditions for biomass production are favourable and we have promising second generation biofuels technologies that are currently in the demonstration phase. In this study we have chosen to focus on cellulose based ethanol, methane from gasification of solid wood as well as DME from gasification of black liquor, with the purpose of identifying research and development potentials that may result in improvements in the WTT emission values. The main objective of this study is thus to identify research and development challenges for Swedish biofuel actors based on literature studies as well as discussions with the the researchers themselves. We have also discussed improvement potentials for the agriculture and forestry part of the WTT chain. The aim of this study is to, in the context of WTT analyses, (i) increase knowledge about the complexity of biofuel production, (ii) identify and discuss improvement potentials, regarding energy efficiency and GHG emissions, for three biofuel production cases, as well as (iii) identify and discuss improvement potentials regarding biomass supply, including agriculture/forestry. The scope of the study is limited to discussing the technologies, system aspects and climate impacts associated with the production stage. Aspects such as the influence on biodiversity and other environmental and social parameters fall beyond the scope of this study. We find that improvement potentials for emissions reductions within the agriculture/forestry part of the WTT chain include changing the use of diesel to low-CO2-emitting fuels, changing to more fuel-efficient tractors, more efficient cultivation and manufacture of fertilizers (commercial nitrogen fertilizer can be produced in plants which have nitrous oxide gas cleaning) as well as improved fertilization strategies (more precise nitrogen application during the cropping season). Furthermore, the cultivation of annual feedstock crops could be avoided on land rich in carbon, such as peat soils and new agriculture systems could be introduced that lower the demand for ploughing and harrowing. Other options for improving the WTT emission values includes introducing new types of crops, such as wheat with higher content of starch or willow with a higher content of cellulose. From the case study on lignocellulosic ethanol we find that 2G ethanol, with co-production of biogas, electricity, heat and/or wood pellet, has a promising role to play in the development of sustainable biofuel production systems. Depending on available raw materials, heat sinks, demand for biogas as vehicle fuel and existing 1G ethanol plants suitable for integration, 2G ethanol production systems may be designed differently to optimize the economic conditions and maximize profitability. However, the complexity connected to the development of the most optimal production systems require improved knowledge and involvement of several actors from different competence areas, such as chemical and biochemical engineering, process design and integration and energy and environmental systems analysis, which may be a potential barrier. Three important results from the lignocellulosic ethanol study are: (i) the production systems could be far more complex and intelligently designed than previous studies show, (ii) the potential improvements consist of a large number of combinations of process integration options wich partly depends on specific local conditions, (iii) the environmental performance of individual systems may vary significantly due to systems design and local conditons.From the case study on gasification of solid biomass for the production of biomethane we find that one of the main advantages of this technology is its high efficiency in respect to converting biomass into fuels for transport. For future research we see a need for improvements within the gas up-grading section, including gas cleaning and gas conditioning, to obtain a more efficient process. A major challenge is to remove the tar before the methanation reaction. Three important results from the biomethane study are: (i) it is important not to crack the methane already produced in the syngas, which indicates a need for improved catalysts for selective tar cracking, (ii) there is a need for new gas separation techniques to facilitate the use of air oxidation agent instead of oxygen in the gasifier, and (iii) there is a need for testing the integrated process under realistic conditions, both at atmospheric and pressurized conditions. From the case study on black liquor gasification for the production of DME we find that the process has many advantages compared to other biofuel production options, such as the fact that black liquor is already partially processed and exists in a pumpable, liquid form, and that the process is pressurised and tightly integrated with the pulp mill, which enhances fuel production efficiency. However, to achieve commercial status, some challenges still remain, such as demonstrating that materials and plant equipment meet the high availability required when scaling up to industrial size in the pulp mill, and also proving that the plant can operate according to calculated heat and material balances. Three important results from the DME study are: (i) that modern chemical pulp mills, having a potential surplus of energy, could become important suppliers of renewable fuels for transport, (ii) there is a need to demonstrate that renewable DME/methanol will be proven to function in large scale, and (iii) there is still potential for technology improvements and enhanced energy integration. Although quantitative improvement potentials are given in the three biofuel production cases, it is not obvious how these potentials would affect WTT values, since the biofuel production processes are complex and changing one parameter impacts other parameters. The improvement potentials are therefore discussed qualitatively. From the entire study we have come to agree on the following common conclusions: (i) research and development in Sweden within the three studied 2G biofuel production technologies is extensive, (ii) in general, the processes, within the three cases, work well at pilot and demonstration scale and are now in a phase to be proven in large scale, (iii) there is still room for improvement although some processes have been known for decades, (iv) the biofuel production processes are complex and site specific and process improvements need to be seen and judged from a broad systems perspective (both within the production plant as well as in the entire well-to-tank perspective), and (v) the three studied biofuel production systems are complementary technologies. Futher, the process of conducting this study is worth mentioning as a result itself, i.e. that many different actors within the field have proven their ability and willingness to contribute to a common report, and that the cooperation climate was very positive and bodes well for possible future collaboration within the framework of the f3 center. Finally, judging from the political ambitions it is clear that the demand for renewable fuels will significantly increase during the coming decade. This will most likely result in opportunities for a range of biofuel options. The studied biofuel options all represent 2G biofuels and they can all be part of the solution to meet the increased renewable fuel demand.
  •  
3.
  • Alvors, Per, et al. (författare)
  • Research and development challenges for Swedish biofuel actors – three illustrative examples : Improvement potential discussed in the context of Well-to-Tank analyses
  • 2010
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Currently biofuels have strong political support, both in the EU and Sweden. The EU has, for example, set a target for the use of renewable fuels in the transportation sector stating that all EU member states should use 10% renewable fuels for transport by 2020. Fulfilling this ambition will lead to an enormous market for biofuels during the coming decade. To avoid increasing production of biofuels based on agriculture crops that require considerable use of arable area, focus is now to move towards more advanced second generation (2G) biofuels that can be produced from biomass feedstocks associated with a more efficient land use.Climate benefits and greenhouse gas (GHG) balances are aspects often discussed in conjunction with sustainability and biofuels. The total GHG emissions associated with production and usage of biofuels depend on the entire fuel production chain, mainly the agriculture or forestry feedstock systems and the manufacturing process. To compare different biofuel production pathways it is essential to conduct an environmental assessment using the well-to-tank (WTT) analysis methodology.In Sweden the conditions for biomass production are favourable and we have promising second generation biofuels technologies that are currently in the demonstration phase. In this study we have chosen to focus on cellulose based ethanol, methane from gasification of solid wood as well as DME from gasification of black liquor, with the purpose of identifying research and development potentials that may result in improvements in the WTT emission values. The main objective of this study is thus to identify research and development challenges for Swedish biofuel actors based on literature studies as well as discussions with the the researchers themselves. We have also discussed improvement potentials for the agriculture and forestry part of the WTT chain. The aim of this study is to, in the context of WTT analyses, (i) increase knowledge about the complexity of biofuel production, (ii) identify and discuss improvement potentials, regarding energy efficiency and GHG emissions, for three biofuel production cases, as well as (iii) identify and discuss improvement potentials regarding biomass supply, including agriculture/forestry. The scope of the study is limited to discussing the technologies, system aspects and climate impacts associated with the production stage. Aspects such as the influence on biodiversity and other environmental and social parameters fall beyond the scope of this study.We find that improvement potentials for emissions reductions within the agriculture/forestry part of the WTT chain include changing the use of diesel to low-CO2-emitting fuels, changing to more fuel-efficient tractors, more efficient cultivation and manufacture of fertilizers (commercial nitrogen fertilizer can be produced in plants which have nitrous oxide gas cleaning) as well as improved fertilization strategies (more precise nitrogen application during the cropping season). Furthermore, the cultivation of annual feedstock crops could be avoided on land rich in carbon, such as peat soils and new agriculture systems could be introduced that lower the demand for ploughing and harrowing. Other options for improving the WTT emission values includes introducing new types of crops, such as wheat with higher content of starch or willow with a higher content of cellulose.From the case study on lignocellulosic ethanol we find that 2G ethanol, with co-production of biogas, electricity, heat and/or wood pellet, has a promising role to play in the development of sustainable biofuel production systems. Depending on available raw materials, heat sinks, demand for biogas as vehicle fuel and existing 1G ethanol plants suitable for integration, 2G ethanol production systems may be designed differently to optimize the economic conditions and maximize profitability. However, the complexity connected to the development of the most optimal production systems require improved knowledge and involvement of several actors from different competence areas, such as chemical and biochemical engineering, process design and integration and energy and environmental systems analysis, which may be a potential barrier.Three important results from the lignocellulosic ethanol study are: (i) the production systems could be far more complex and intelligently designed than previous studies show, (ii) the potential improvements consist of a large number of combinations of process integration options wich partly depends on specific local conditions, (iii) the environmental performance of individual systems may vary significantly due to systems design and local conditons.From the case study on gasification of solid biomass for the production of biomethane we find that one of the main advantages of this technology is its high efficiency in respect to converting biomass into fuels for transport. For future research we see a need for improvements within the gas up-grading section, including gas cleaning and gas conditioning, to obtain a more efficient process. A major challenge is to remove the tar before the methanation reaction.Three important results from the biomethane study are: (i) it is important not to crack the methane already produced in the syngas, which indicates a need for improved catalysts for selective tar cracking, (ii) there is a need for new gas separation techniques to facilitate the use of air oxidation agent instead of oxygen in the gasifier, and (iii) there is a need for testing the integrated process under realistic conditions, both at atmospheric and pressurized conditions.From the case study on black liquor gasification for the production of DME we find that the process has many advantages compared to other biofuel production options, such as the fact that black liquor is already partially processed and exists in a pumpable, liquid form, and that the process is pressurised and tightly integrated with the pulp mill, which enhances fuel production efficiency. However, to achieve commercial status, some challenges still remain, such as demonstrating that materials and plant equipment meet the high availability required when scaling up to industrial size in the pulp mill, and also proving that the plant can operate according to calculated heat and material balances. Three important results from the DME study are: (i) that modern chemical pulp mills, having a potential surplus of energy, could become important suppliers of renewable fuels for transport, (ii) there is a need to demonstrate that renewable DME/methanol will be proven to function in large scale, and (iii) there is still potential for technology improvements and enhanced energy integration.Although quantitative improvement potentials are given in the three biofuel production cases, it is not obvious how these potentials would affect WTT values, since the biofuel production processes are complex and changing one parameter impacts other parameters. The improvement potentials are therefore discussed qualitatively. From the entire study we have come to agree on the following common conclusions: (i) research and development in Sweden within the three studied 2G biofuel production technologies is extensive, (ii) in general, the processes, within the three cases, work well at pilot and demonstration scale and are now in a phase to be proven in large scale, (iii) there is still room for improvement although some processes have been known for decades, (iv) the biofuel production processes are complex and site specific and process improvements need to be seen and judged from a broad systems perspective (both within the production plant as well as in the entire well-to-tank perspective), and (v) the three studied biofuel production systems are complementary technologies. Futher, the process of conducting this study is worth mentioning as a result itself, i.e. that many different actors within the field have proven their ability and willingness to contribute to a common report, and that the cooperation climate was very positive and bodes well for possible future collaboration within the framework of the f3 center.Finally, judging from the political ambitions it is clear that the demand for renewable fuels will significantly increase during the coming decade. This will most likely result in opportunities for a range of biofuel options. The studied biofuel options all represent 2G biofuels and they can all be part of the solution to meet the increased renewable fuel demand.
  •  
4.
  • Ekvall, Tomas, et al. (författare)
  • Modeling recycling in life cycle assessment
  • 2020
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The method for modeling material recycling can have a decisive impact on the environmental assessment of products if they have a high content of recycled material or if they are recycled after use. The recent EU guideline on Product Environmental Footprint includes a rather complex approach. In response to this, the Swedish Life Cycle Center gathered companies, researchers and authorities in this project aiming to collect and disseminate knowledge on existing approaches to allocation at open-loop recycling, to systematically assess these methods, test them in case studies, and to investigate to what extent consensus can be reached among the Swedish actors on how recycling should be modelled in an LCA. Information on twelve existing approaches is collected through a literature survey covering international standards, important guidelines and a selection of scientific papers. They are assessed with a set of indicators developed based on the view that methods for environmental systems analysis are good to the extent that they can be assumed to contribute to reduced environmental impacts or, at least, to reduced environmental impacts per functional unit. After case-studies and a debate, we present an application-dependent structure for requirements on the methods for modelling recycling in life cycle assessments.
  •  
5.
  • Eriksson, Elin, et al. (författare)
  • Carbon footprint of cartons in Europe - Carbon Footprint methodology and biogenic carbon sequestration
  • 2010
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • A methodology for carbon sequestration in forests used for carton production has been developed and applied. The average Carbon Footprint of converted cartons sold in Europe has been calculated and summarised. A methodology for a EU27 scenario based assessment of end of life treatment has been developed and applied. The average Carbon Footprint represents the total Greenhouse Gas emissions from one average tonne of virgin based fibres and recycled fibres produced, converted and printed in Europe.
  •  
6.
  •  
7.
  • Erlandsson, Martin, et al. (författare)
  • Livscykelanalysbaserade miljökrav för byggnadsverk – En verktygslåda för att ställa miljökrav
  • 2018
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Miljöanpassad offentlig upphandling (Green Public Procurement, GPP) är en möjlighet för den offentliga sektorn att ställa miljökrav så att upphandlingen även ska bidra till en bättre miljö.Projektet syftar till att öka marknadsimplementeringen av LCA för att åstadkomma resurseffektiva och miljöanpassade byggnader, sett över hela livscykeln. Projektet har pågått från 2015 till 2017. Det har bedrivits i dialogform med en större referensgrupp bestående av representanter från; Akademiska Hus, Boverket, Cementa, NCC, Peab, Riksbyggen, Skanska, Stålbyggnadsinstitutet, Svensk Betong, Svenskt Trä och Vacse. Denna dialog hölls i projektets inledning och resulterade i en detaljerad lista med rekommendationer för hur LCA bör tillämpas för byggnadsverk i upphandling (se bilaga 1). Utifrån dialogens rekommendationer har vi konkretiserat ett antal grundläggande rekommendationer för att ställa miljökrav med LCA i syfte att underlätta för fler kommuner, beställare och huvudmän för miljöcertifieringssystem för byggnader att tillämpa LCA på ett konkurrensneutralt, kostnadseffektivt och samtidigt robust sätt. Verktygslådans övergripande rekommendationer sammanfattas i följande rubriker: • Robust LCA • Marknadsdriven LCA • LCA för alla • LCA-trappan • Publik LCA-kvalitetsrapport och Q-metadata • Uppföljning av ställda LCA-krav Vidare ger rapporten förslag på hur LCA-krav kan formuleras och när i byggprocessen som kraven kan ställas, d.v.s. i planskedet, idéskedet, projekteringsskedet och vid entreprenadupphandling.
  •  
8.
  • Erlandsson, Martin, et al. (författare)
  • PCR guide for construction products and works - Specifications to and evaluation of EN 15804
  • 2013
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The main question handled in the project ‘Robust LCA’ is how to use LCA for a robust comparison of construction products or any construction works. The project is divided into two parts where the first part deals with a general introduction to methodology problems related to LCA and what we here call ‘choice of system perspective’. The latter aspect deals with the question when to use to use attributional or consequential LCA. An LCA typology is developed in this part of the project, where different ISO 14044 methodologies are classified. The typology also deals with what question these different methodologies address. The second part of the project, given in this report, deals with commonly methodology aspects that are important to find consensus about. These methodical aspects selected and handled here are based on a workshop result. Already existing standards is used as a baseline to describe the current best common practice. The main LCA methodology used as basis for this work is EN 15804, a so call ‘core PCR’, (product category rules) for all constructions products. However, since the common goal within an LCA case study is to use a harmonized method in the entirely study, such PCR are valid for all products and services used in the life cycle of any construction works. For instance, this implies that the impact from different energy wares is to be handled with the same methodology as used for the construction products. This PCR guide includes specifications to EN 15804, as well as the potential development for aspects that are not handled in this standard today. The outlined suggestions and recommendations are the result of a series of workshops, with delegates from different parties within the Swedish building material, construction and real estate sector, including civil engineering work. The PCR guides have been subject to an open consultation that was closed on the 20th of October 2013, where all parties have had the possibility to put forward their opinions. The final recommendation in this report is based on a common understanding within the project group and takes into account the submitted written contributions to the open consultation (version dated 2013-09-18). The recommendation therefore describes the current consensus in the Swedish group participating in this project. Moreover, the PCR Guide was also sent to some EPD program operators (EPD Norway, International EPD system, Institut Bauen und Umwelt (Germany)) and the working group behind EN 16485. This was done to create an opportunity to bring forward dissenting opinion to the specifications given here. Please note that this report shall not be regarded as a PCR, but as an inspiration for future development of such work.
  •  
9.
  • Erlandsson, Martin, et al. (författare)
  • Robust LCA: Metodval för robust miljöjämförelse med livscykelanalys (LCA) - introduktion för nyfikna
  • 2013
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Målet med projektet robust LCA är att belysa hur LCA kan utföras med olika metodansatser i olika bedömningssituationer. Syftet är att ge förslag på metoder, anvisningar och handledning för hur LCA kan anpassas för att uppnå en ökad jämförbarhet mellan alla slags produkter, inklusive byggnader och andra konstruktioner. Med andra ord är ambitionen att utveckla och beskriva hur LCA kan göras mer entydig. Det skulle stärka dess användbarhet vid produktjämförelse och som ett verktyg i offentlig upphandling, i miljöklassningssystem med mera. En sådan utveckling bör gynna och stimulera en ökad användning av LCA på markanden. På samma sätt kan konkurrenskraften stärkas för de innovativa företag som ser miljöaspekter som en konkurrensfördel. Projektet är indelat i två delprojekt där denna rapport tillsammans med rapporten ”Typologi över LCA-metodik – två kompletterande systemsyner” (IVL rapport B2122), utgör avrapporteringen från projektets första del. Dessa underlagsrapporter vänder sig till en icke-LCA-expert såväl som till experten. Denna del av projektet utgör en introduktion till vad LCA är, dess historia, dess kopplingar till andra kommunikationsprodukter och en beskrivning av viktiga metodval som görs i en LCA och som påverkar resultatet. Den andra delen av projektet vänder sig till LCA-experten och har resulterat i en ”PCR-guide ...” med detaljerade metodanvisningar av sådant som är otydligt eller som vi anser behöver förbättras i de LCA-standarder som idag används i bygg- och fastighetssektorn (EN 15 804 och EN 15978) (IVL rapport B2101). För att beskriva resultatet av konsensusprocessen kommer styrgruppen att arbeta fram ett dokument som omfattar ett antal konkreta ställningstaganden, kopplat till användning av LCA i sektorn, med titeln; ”Policy-sammanfattning: Robust användning av LCA”. Projektet har bedrivits i dialogform med flera workshops där avsikten har varit att nå samsyn om en gemensam robust LCA-metodik som gör att den går att användas för att jämföra produkter, byggnadsverk med mera.
  •  
10.
  • Erlandsson, Martin, et al. (författare)
  • Robust LCA: Typologi över LCA-metodik - två kompletterande systemsyner
  • 2014
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Användningen av livscykelanalys (LCA) kan delas in i utvärderingar av enskilda produkter och utvärderingar av sammansatta system med flera produkter. I det första fallet talar vi i detta projekt om en bokförings-LCA och i det andra fallet om en konsekvens-LCA . I båda fallen tillämpas ett livscykeltänkande. I en bokförings-LCA ingår bara direkta effekter inom den studerade produktens livscykel, medan en konsekvens-LCA även inkluderar effekter på angränsande produkter. Systemperspektiven kompletterar med andra ord varandra. Notera att i en LCA används begreppet produkt för alla nyttigheter som en process genererar oavsett om det är en tjänst, ett enskilt material, eller en komplex produkt såsom ett byggnadsverk. En bokförings-LCA kännetecknas av ambitionen att den beräknade miljöbelastningen för alla världens produkter ska kunna summeras och stämmer då med de globala utsläppen, det vill säga den så kallade 100%-regeln. I en konsekvens-LCA gäller inte detta utan här ges en beskrivning av vad som händer vid en förändring och vilka konsekvenser detta har på ett bredare, mer sammansatt system och dess miljöbelastning. I projektet och tidigare vetenskapliga studier konstateras det att dessa två systemsyner svarar på olika frågor och därmed kan existera parallellt, givet att det är tydligt vilken systemsyn som använts. Följande rekommendationer om användningen av de två systemsynerna, baseras på det arbete som gjorts i projektetet Robust LCA, och kan sammanfattas enligt nedan: Bokförings-LCA lämpar sig för att utvärdera och jämföra produkter där det är viktigt att entydiga svar erhålls och att miljöbelastning som beskrivs stämmer med de utsläpp som beslutsfattarna kan relatera till. Konsekvens-LCA inkluderar indirekta effekter och lämpar sig för att ge beslutsfattare insikt i hur deras beslut kan påverka samhällets miljöbelastning. I den LCA-typologi som tagits fram delas bokförings-LCA in i tillämpningsfall som här benämns Produkter respektive Material . På motsvarande sätt delas konsekvens-LCA delas in i Undvikna emissioner och Korg av funktioner . Sedan kan dessa varianter, beroende på vilken typ av konsekvenser som analyseras, utföras med en Antagen marginal , Driftsmarginal , Utbyggnadsmarginal eller Komplex marginal .
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
rapport (15)
tidskriftsartikel (1)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (16)
Författare/redaktör
Jelse, Kristian (14)
Erlandsson, Martin (5)
Ekvall, Tomas (4)
Lindfors, Lars-Gunna ... (4)
Stålbrand, Henrik (3)
Kusar, Henrik (3)
visa fler...
Björnsson, Lovisa (3)
Wetterlund, Elisabet ... (3)
Sjöström, Krister (3)
Zacchi, Guido (3)
Wallberg, Ola (3)
Rydberg, Tomas (3)
Arnell, Jenny (3)
Hoffstedt, Christian (3)
Klintbom, Patrik (3)
Magnusson, Mimmi (3)
Öhrman, Olof (3)
Lidén, Gunnar (2)
Eriksson, Elin (2)
Börjesson, Pål (2)
Pettersson, Karin (2)
Harvey, Simon (2)
Hallgren, Fredrik (2)
Karlsson, Per Erik (2)
Berglin, Niklas (2)
Grahn, Maria (2)
Holmgren, Kristina (2)
Jelse, Kristian, 198 ... (2)
Harvey, Simon, 1965 (1)
Grahn, Maria, 1963 (1)
Rydberg, Tomas, 1962 (1)
Lidén, Gunnar, 1961 (1)
Albertsson, Gustav S ... (1)
Alvfors, Per (1)
Alvfors, Per, 1954- (1)
Berglin, Niklas, 196 ... (1)
Holmgren, Kristina, ... (1)
Pettersson, Karin, 1 ... (1)
Alvors, Per (1)
Åström, Stefan (1)
Lindblad, Maria (1)
Stripple, Håkan (1)
Björk, Anders (1)
Malmqvist, Tove (1)
Johnson, Hannes, 198 ... (1)
Malmqvist, Tove, 196 ... (1)
Hanning, Anne-Charlo ... (1)
Roth, Susanna (1)
Zetterberg, Lars (1)
Krozer, Anatol (1)
visa färre...
Lärosäte
IVL Svenska Miljöinstitutet (11)
Kungliga Tekniska Högskolan (2)
Chalmers tekniska högskola (2)
Linköpings universitet (1)
Lunds universitet (1)
Språk
Engelska (10)
Svenska (6)
Forskningsämne (UKÄ/SCB)
Teknik (5)
Naturvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy